摘要
本文介绍了非负矩阵分解(Non-negative Matrix Factorization,NMF)的基本原理和性质,将现有NMF算法分为了基于基本NMF模型的算法和基于改进NMF模型的算法两大类,在此基础上较为系统地分析、总结和比较了它们的构造原则、应用特点以及存在的问题,最后预测和分析了未来NMF算法研究的可能方向.
The fundamentals and properties of non-negative matrix factorization (NMF) are introduced, and available NMF algorithms are classified into two categories: basic NMF model-based algorithms and improved NMF model-based algorithms, Based on these, the design principles, application characteristics, and existing problems of the algorithms are systematically discussed. Be- sides, some open problems in the development of NMF algorithms are presented and analyzed.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2008年第4期737-743,共7页
Acta Electronica Sinica
基金
国家自然科学基金(No.60573148)
关键词
非负矩阵分解
多元数据描述
特征提取
non-negative matrix factorization
multivariate data representation
feature extraction