期刊文献+

非负矩阵分解算法综述 被引量:105

A Survey on Algorithms of Non-Negative Matrix Factorization
下载PDF
导出
摘要 本文介绍了非负矩阵分解(Non-negative Matrix Factorization,NMF)的基本原理和性质,将现有NMF算法分为了基于基本NMF模型的算法和基于改进NMF模型的算法两大类,在此基础上较为系统地分析、总结和比较了它们的构造原则、应用特点以及存在的问题,最后预测和分析了未来NMF算法研究的可能方向. The fundamentals and properties of non-negative matrix factorization (NMF) are introduced, and available NMF algorithms are classified into two categories: basic NMF model-based algorithms and improved NMF model-based algorithms, Based on these, the design principles, application characteristics, and existing problems of the algorithms are systematically discussed. Be- sides, some open problems in the development of NMF algorithms are presented and analyzed.
作者 李乐 章毓晋
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第4期737-743,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60573148)
关键词 非负矩阵分解 多元数据描述 特征提取 non-negative matrix factorization multivariate data representation feature extraction
  • 相关文献

参考文献37

  • 1D D Lee,H S Seung.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401 (6755):788 -791.
  • 2S E Palmer.Hierarchical structure in perceptual representation[J].Cogn Psychol,1977,9(3):441 -474.
  • 3E Wachsmuth,M W Omm,D I Perrett.Recognition of objects and their component parts:Responses of single units in the temporal cortex of the macaque[J].Cereb Corte,1994,4(5):509-522.
  • 4N K Logothetis,D L Sheinberg.Visual object recognition[J].Annu Rev Neurosci,1996,19(1):577-621.
  • 5I Biederman.Recognition-by-components:A theory of human image understanding[J].Psychol Rev,1967,94(2):115-147.
  • 6S Ullman.High-Level Vision:Object Recognition and Visual.Cognition[M].Cambridge:MIT Press,1996.
  • 7D J Field.What is the goal of sensory coding[J]? Neural Computation,1994,6(4):559-601.
  • 8P O Hoyer.Non-negative rnatrix factorization with sparseness constraints[J].J of Math Learning Res,2004,5(9):1457-1469.
  • 9M Heiler,C Schnorr.Learning sparse representations by non-negative matrix factorization and sequential cone programming[J].J of Mach.Learning Res,2006,7(7):1385-1407.
  • 10A Cichocld,R Zdunek,S Amari.Csiszar' s divergences for non-negative matrix factorization:Family of new algorithms[J].Lecture Notes in Computer Science,2006,3889:32-39.

二级参考文献19

  • 1[2]Lee D D, Seung H S. Algorithms for non-negative matrix factorization [J]. Advances in Neural Information Processing Systems, 2001, 13: 556-562.
  • 2[3]Tsuge S, Shishibori M, Kuroiwa S. Dimensionality reduction using non-negative matrix factorization for information retrieval [A]. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetice[C]. Tucson, USA, 2001. 960-965.
  • 3[4]Li S Z, Hou X W, Zhang H J. Learning spatially localized parts-based representation [A]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition [C]. Hawaii, USA, 2001.207-212.
  • 4[5]Lu Jianjiang, Xu Baowen, Yang Hongji. Mining typical user profiles using non-negative matrix factorizationg [A]. In:The Ninth International Conference on Distributed Multimedia Systems [C]. Florida, USA, 2003. 105-109.
  • 5[1]Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization [J]. Nature, 1999, 401: 788-791.
  • 6[9]Bazarra M S, Sherali H D, Shetty C M. Nonlinear Programming[ M ].John Wiley & Sons Inc. 1993.
  • 7[10]Castleman K R. Digital Image Processing[ M ]. Prentice-Hall Inc. 1996.
  • 8[11]Phillips P J, Wechsler H, Huang J, Rauss P. The FERET database and evaluation procedure for face recognition algorithms[J]. Image and Vision Computing, 1998,16(5) :295 - 297.
  • 9[12]Martinez A M, Benavente R. The AR Face Database[ R]. CVC Technical Report #24,6,1998.
  • 10[14]Feng T, Li S Z, Shum H Y, Zhang H J. Local non-negative matrix factorization as a visual representation[ A]. Proceedings of the 2nd International Conference on Development and Learning [ C ]. IEEE, 2002.178- 183.

共引文献33

同被引文献933

引证文献105

二级引证文献451

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部