期刊文献+

基于晶格动力学的纳米薄膜热特性研究 被引量:3

Study on Thermal Properties of Nanofilms Based on Lattice Dynamics
下载PDF
导出
摘要 针对分子动力学模拟存在的缺点,提出了基于晶格动力学模拟纳米薄膜热特性的新方法,并用该方法模拟了各种不同厚度的硅和氩纳米薄膜的比热、熔化温度、热膨胀系数和热传导系数等热特性参数。计算结果表明纳米薄膜具有与宏观晶体不同的热特性,并且呈现随纳米薄膜厚度变化的尺寸效应:纳米薄膜越薄,则熔化温度越低、比热越大、面向热膨胀系数越大、法向热传导系数越小;当纳米薄膜厚度远小于相应的宏观晶体的声子平均自由程时,法向热传导系数远小于相应的宏观晶体的热传导系数,并与纳米薄膜厚度成正比。 To overcome the drawbacks of molecular dynamics simulation, a new approach based on lattice dynamics to simulate the thermal properties of nanofilms was put forward, and was applied to simulate the thermal property parameters, such as the specific heat capacities, melting temperatures, thermal expansion coefficients and thermal conductivities of silicon and argon nanofilms with different thicknesses . The calculating results show that nanofilms have different thermal properties from the corresponding bulk crystal and appear thickness size effects on thermal properties. The thinner nanofilm has lower melting point, larger specific heat capacity, larger thermal expansion coefficient in the in-plane direction and smaller thermal conductivity in the cross-plane direction than the thicker film, and the thermal conductivity of nanofilm in the crossplane direction is in direct proportion to the thickness of nanofilm when the thickness of nanofilm is much smaller than the phonon mean free path of the corresponding bulk crystal.
出处 《微纳电子技术》 CAS 2008年第5期249-254,共6页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(5375154)
关键词 微/纳机电系统 纳米薄膜 晶格动力学 热特性 尺寸效应 micro/nano electromechanical system (M/NEMS) nanofilm lattice dynamics thermal property size effect
  • 相关文献

参考文献24

  • 1GLADKIKH N T, BOGATYRENKO S I, KRYSHTAL A P, et al. Melting point lowering of thin metal films (Me = In, Sn, Bi, Pb) in Al/Me/Al film system [J]. Appl Surf Sci, 2003, 219:338-346.
  • 2SANDEEP P, VIJAY S. Size dependence of thermal expansion of nanostructures [J]. Phys Rev:B, 2005, 72 (11): 113404- 1 - 4.
  • 3ORAIN S, SCUDELLER Y, BROUSSE T. Structural and microstructural effects on the thermal conductivity of zirconia thin films [J]. Microscale Thermophysical Engineering, 2001, 5 (4): 267-275.
  • 4DINESH P. Molecular dynamics simulations of biological membranes in the presence of cryoprotectants [D]. Louisiana State University, 2005.
  • 5BORN M, HUANG K. Dynamical theory of crystal lattices [M]. Oxford: Clarendon Press, 1968.
  • 6BOTTGER H. Principles of the theory of lattice dynamics [M]. Weinheim: Physik-Verlag, 1983.
  • 7SEMWAL B S, SHARMA P K. Thermal conductivity of an anharmonic crystal [J]. Phys Rev: B, 1972, 5: 3909- 3914.
  • 8LINDERMANN F A. fiber die berechnung molecularer eigenfrequenzen[J]. Z Phys, 1910, 11:609-612.
  • 9MARTINT C J, O'CONNOR D A. An experimental test of Lindemann's melting law [J]. J Phys C: Solid State Phys, 1977, 10: 3521-3526.
  • 10TOMOTO I, RIE K, MASAHIRO S. Effects of film thickness on the melting of Cu thin films analyzed by the molecular dynamics [J]. Current Advances in Materials and Processes, 2005, 18 (4): 7- 10.

二级参考文献38

  • 1Hatta Ichiro, Kato Ryozo, Maesono Akikazu, et al.Thermal diffusivity measurement of thin films by means of an ac calorimetric method [ J ]. Review of Scientific Instruments, 1985, 56(8) :1643 - 1647.
  • 2Kading O W, Skurk H, Goodson K E. Thermal conduction in metallized silicon-dioxide layers on silicon[ J]. Applied Physics Letters, 1994, 65 ( 13 ) : 1629 -1631.
  • 3Zhang Xiang, Gridgoropoulos Costas P. Thermal conductivity and diffusivity of free-standing silicon nitride thin films[ J ]. Review of Scientific Instruments, 1995, 66(2) :1115 - 1120.
  • 4Yu X Y, Zhang L, Chen G. Thermal-wave measurement of thin-film thermal diffusivity with different laser beam configurations [ J ]. Review of Scientific Instruments, 1996, 67(6) :2312 -2316.
  • 5Lee S M, Cahill David G. Thermal conductivity of sputtered oxide films[ J ]. Physical Review B, 1995, 52( 1 ) :253 - 257.
  • 6Cahill David G. Nanoscale thermal transport [ J ]. Journal of Applied Physics, 2003, 93(2) :793 - 818.
  • 7Cahill David G, Pohl R O. Thermal conductivity of amorphous solids above the plateau [ J ]. Physical Review B, 1987, 35(8) : 4067-4073.
  • 8Kurabayashi Ktasuo, Touzelbaev Maxat, Goodson Kenneth E, et al. Measurement of the thermal conductivity anisotropy in polyimide films [ J ]. IEEE Journal of Microelectromechanical systems, 1999, 8(2) : 180 - 191.
  • 9Huxtable S T, Abramson A R, Tien C L, et al. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices[J].Applied Physics Letters, 2002, 80(10) : 1737-1739.
  • 10Song D W, Radetic T, Chen G, et al. Thermal conductivity of nanoporous bismuth thin films[J]. Applied Physics Letters, 2004, 84( 11 ) : 1883 - 1885.

共引文献6

同被引文献12

  • 1HUANG Jian-Ping WU Xue-Zhong LI Sheng-Yi.Thermal Expansion Coefficients of Thin Crystal Films[J].Communications in Theoretical Physics,2005,44(5X):921-924. 被引量:6
  • 2Cattaneo C. [J]. Compte Rendus, 1958,247:431-433.
  • 3McGaughey A J H, Kaviany M. [J]. Physical Review B, 2004,69:1-12.
  • 4Callaway J. [J]. Physical Review, 1959,113 (4) : 1046- 1051.
  • 5Holland M G. [J].Physical Review, 1963,132(6):2461- 2471.
  • 6Majumdar A. [J]. Journal of Heat Transfer, 1993, 115 (1) :7-16.
  • 7Anderson C V D R, Tamma K K.[J]. Physical Review Letters, 2006,96 : 1-4.
  • 8Cahill D G, Watson S K, Pohl R O. [J]. Physical Review B, 1992,46(10) : 6131-6140.
  • 9玻恩,黄昆.品格动力学理论[M].北京:北京大学出版社,2006.242.
  • 10Wang Zenghui, Li Zhixin.[J]. Thin Solid Films,2006, 515:2203-2206.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部