期刊文献+

三维退化时滞微分系统的Hopf分支

Hopf Bifurcation of Three-neuron Degenerate Differential Equations with delay
下载PDF
导出
摘要 讨论了三维退化时滞微分系统的Hopf分支.通过分析其特征方程,发现当时滞穿越某些值时出现了分支.给出了寻找Hopf分支点的计算方法. This paper discusses the problem of Hopf bifurcation of three-neuron degenerate differential equations with delay. By analyzing the associated characteristic equation, it is found that Hopf bifurcation occurs when delay pass through a value. A formula for determining the direction of Hopf bifurcation is given.
作者 朱玲 蒋威
出处 《大学数学》 北大核心 2008年第2期61-65,共5页 College Mathematics
基金 国家自然科学基金(10241005)资助项目 教育部重点项目(205068) 安徽农业大学校长青年基金项目(20079nr26)
关键词 时滞 退化微分系统 HOPF分支 稳定性 delay degenerate differential systems Hopf bifurcation, stability
  • 相关文献

参考文献6

  • 1Ruan S, Wei J. On the zero of transcendental functions with applications to stability of delay differential equations with to delay[J]. Dynam. Contin. Discrete Implus. System, 2003,(10):863.
  • 2Wenwu Yu, Cao Jinde. Hopf bifurcation and stability of periodic solutions for van der pol equation with time delay[J]. Nonlinear Analysis, 2005,362 : 141- 165.
  • 3Wenwu Yu, Cao Jinde. Stability and Hopf analysis on a four neuron BAM neural network with time delays, Physics letters[J]. 2006,351 : 64- 78.
  • 4Hale J K. Introduction to Functional Differential Equations[M]. Berlin, New York: Springer-Verlay, 1992.
  • 5Dai L. Singular Control Systems[M]. Berlin, New York: Springer-Verlag, 1989.
  • 6Campbell S L. Singular Systems of Differential Equation(Ⅱ)[M]. Sanfrancisco, London: Melbourne, Pitman, 1982.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部