期刊文献+

微米级α-Al_2O_3陶瓷恒速无压主烧结曲线的建立

Construction of the Master Sintering Curve for Micron-Size α-Al_2O_3 During Pressureless Sintering at Constant Heating Rate
下载PDF
导出
摘要 主烧结曲线对于预测陶瓷的烧结行为非常有用,以主烧结曲线理论为基础,对微米级α-Al2O3的恒速无压烧结行为进行了研究。根据Hansen提出的全期烧结模型,结合低升温速率条件下热膨胀仪记录的烧结数据建立了α-Al2O3(平均粒径为2.5μm)的主烧结曲线,并由此得到其烧结过程中的表观激活能为1148kJ/mol。为验证所建主烧结曲线的正确性,对同批次坯体样品进行不同路径的烧结,用Archimedes法实测烧结体密度,所测结果与主烧结曲线预测的结果相一致,从而证明了所建主烧结曲线的正确性。因此微米级α-Al2O3主烧结曲线对烧结路径不敏感,烧结体的相对密度仅是时间和温度的函数,可以预测烧结收缩率和最终相对密度,反之,可以根据目标相对密度制定相应的烧结制度。 The master sintering curve (MSC) is quite useful for analyzing the shrinkage behavior of ceramics. In this study, the shrinkage behavior for α-Al2O3 with the mean particle size of 2.5μm were evaluated based on the master sintering curve (MSC) theory. Based on the combined-stage sintering model, the master sintering curve (MSC) for the α-Al2O3 was constructed for pressureless sintering at constant heating rate in a dilatometer. The relative density of the sample was measured using the Archimedes method. The MSC curve of micron-size α-Al2O3 samples was validated under different thermal histories. The concept of the MSC has been used to evaluate the apparent activation energy for the above powder, and a high value of 1148 kJ/mol was obtained. The MSC, in which the sintered density is a unique function of the integral of a temperature function over time, is insensitive to the heating path. According to the MSC, it is possible to predict the sintering shrinkage and final density, on the other hand, if the final desired density is known, it is possible to find out the corresponding value from the abscissa of the master sintering curve and thereafter to make the sintering schedule.
出处 《硅酸盐通报》 CAS CSCD 北大核心 2008年第2期236-241,共6页 Bulletin of the Chinese Ceramic Society
基金 青岛市自然科学基金(05-1-JC-89)
关键词 全期烧结模型 主烧结曲线 恒速无压烧结 Α-AL2O3 combined stage sintering model master sintering curve pressureless sintering at constant heating rate α-Al2O3
  • 相关文献

参考文献18

  • 1Upadhyaya G S. Some issues in sintering science and technology [J]. Mater Chem & Phy, 2001,67:1-5.
  • 2Kuczynski G C. Self-diffusion in sintering of metallic particles[J]. Trans Am Inst Mining Met Eng,1949, 185(2) :169-178.
  • 3Coble R L. Sintering crystalline solids, (Ⅰ) Intermediate and final state diffusion models [ J]. J Appl Phys, 1961,32 (5) : 787-792.
  • 4Ewsuk K G, Arguello J G, Bencoe D N, et al. Characterizing powders for dry dressing, sintering[J]. Bull Am Ceram Soc, 2003, 82: 41-47.
  • 5Ewsuk K G, Argtlello J G. Controlling ceramic powder compaction through science-based understanding[J]. Key Eng Mater, 2004, 264:149- 155.
  • 6Coble R L. Sintering crystalline solids, (Ⅱ) Experimental test of diffusion models in powder compacts[J]. J Appl Phys, 1961,32:793-799.
  • 7Hansen J D, Rusin R P, Teng M H. Combined-stage sintering model [J]. J Am Ceram Soc, 1992, 75(5) :1129-1135.
  • 8Su H, Johnson D L. Master sintering curve: A practical approach to sintering [J]. J Am Ceram Soc, 1996, 79:3211-3217.
  • 9Ewsuk K G, Ellerby D T, DiAntonio C B. Analysis of nanocrystalline and microcrystalline ZnO sintering using master sintering curves [ J ]. J Am Ceram Soc, 2006, 89:2003-2009.
  • 10DiAntonio C B, Ewsuk K G. Controlled and predicted ceramic sintering through master sintering curve theory [ J ]. Ceram Trans, 2005, 157:15- 23.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部