期刊文献+

A rough sets based pruning method for bagging ensemble

A rough sets based pruning method for bagging ensemble
下载PDF
导出
摘要 Ensemble techniques train a set of component classifiers and then combine their predictions to classify new patterns.Bagging is one of the most popular ensemble techniques for improving weak classifiers.However,it is hard to deploy in many real applications because of the large memory requirement and high computation cost to store and vote the predictions of component classifiers.Rough set theory is a formal mathematical tool to deal with incomplete or imprecise information,which has attracted a lot of attention from theory and application fields.In this paper,a novel rough sets based method is proposed to prune the classifiers obtained from bagging ensemble and select a subset of the component classifiers for aggregation.Experiment results show that the proposed method not only decreases the number of component classifiers but also obtains acceptable performance. Ensemble techniques train a set of component classifiers and then combine their predictions to classify new patterns. Bagging is one of the most popular ensemble techniques for improving weak classifiers. However, it is hard to deploy in many real applications because of the large memory requirement and high computation cost to store and vote the predictions of component classifiers. Rough set theory is a formal mathematical tool to deal with incomplete or imprecise information, which has attracted a lot of attention from theory and application fields. In this paper, a novel rough sets based method is proposed to prune the classifiers obtained from bagging ensemble and select a subset of the component classifiers for aggregation. Experiment results show that the proposed method not only decreases the number of component classifiers but also obtains acceptable performance.
出处 《重庆邮电大学学报(自然科学版)》 2008年第3期372-378,共7页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 Supported by the National Natural Science Foundation of China(Granted No.60775036 and No.60475019) the Ph.D.programs Foundation of Ministry of Education of China(No.20060247039)
关键词 粗糙集 系综技术 数据处理 制袋材料 Rough sets Bagging ensemble Pruning method
  • 相关文献

参考文献23

  • 1[1]DIETTERICH T.Ensemble methods in machine learning[C]//KITTLER J,ROLI F.Proceedings of the First International Workshop on Multiple Classi-fier Systems,Cagliari,Italy,June 21-23,2000.London:Springer-Verlag,2000:1-15.
  • 2[2]BREIMAN L.Bagging predictors[J].Machine Learn-ing,1996,24(2):123-140.
  • 3[3]GONZALO Martinez-Munoz,ALBERTO Suárez.Pruning in ordered bagging ensembles[C]// WIL-LIAM W.Cohen,Andrew Moore (Eds.).Proceed-ings of the 23rd international conference on Machine learning (ICML 2006),Pittsburgh,Pennsylvania,USA,June 25-29,2006.NewYork:ACM Press,2006:609-616.
  • 4[4]MARGINEANTU D D,DIETTERICH T G.Pruning adaptive boosting[-C]//Proeeedings of the 14th In-ternational Conference on Machine Learning (ICML1997).San Francisco:Morgan Kaufmann Publishers,1997:211-218.
  • 5[5]GONZALO Martinez-Munoz,ALBERTO Suárez.U-sing boosting to prune bagging ensembles[J].Pat-tern Recognition Letters,2007,28(1):156-165.
  • 6[6]CARUANA R,NICULESCU-Mizil A,CREW G.,et al.Ensemble selection from libraries of models[C]//Proceedings of the Twenty-first International Con-ference (ICML 2004),Banff,Alberta,Canada,July4-8,2004.NewYork:ACM Press,2004:18-25.
  • 7[7]ZHANG Yi,BURER Samuel,NICK Street W.En-semble Pruning Via Semi-definite Programming[J].Journal of Machine Learning Research 2006,(7):1315-1338.
  • 8[8]ZHOU Z H,TANG W.Selective ensemble of decision trees[C]//Lecture Notes in Artificial Intelligence.Berlin:Springer,2003,2639:476-483.
  • 9[9]PAWLAK Z.Rough Sets[J].Int.Journal of Comput-er and Information Sciences,1982,11(6):341-356.
  • 10[10]SKOWRON R,RAUSZER C.The discernibility ma-trices and functions in information systems[C]//SI-owinski R.Intelligent decision Support:Handbook of Applications and Advances of Rough Set Theory,Dordreeht:Kluwer Academic Publishers,1992:331-362.

二级参考文献15

  • 1王珏,袁小红,石纯一,郝继刚.关于知识表示的讨论[J].计算机学报,1995,18(3):212-224. 被引量:54
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 4苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 5苗夺谦,博士学位论文,1997年
  • 6王珏,J Comput Sci Technol,1998年,13卷,2期,189页
  • 7Miao Duoqian,IEEE ICIPS’97,1997年,1155页
  • 8苗夺谦,博士学位论文,1997年
  • 9陆汝钤,人工智能,1996年
  • 10Wong S K M,Bull Polish Acad Sci,1985年,33卷,693页

共引文献733

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部