期刊文献+

基于神经网络集成的Windows病毒检测方法研究 被引量:1

The Research of Windows virus Detection Based on Neural Network Ensembles
下载PDF
导出
摘要 该文针对Win32PE病毒种类多,破坏力强的特点,提出一种基于神经网络集成的病毒检测方法。神经网络集成采用负相关学习方法进行训练,采用n-gram特征字统计方法得到病毒特征字,计算特征字信息条件熵,来选择作为训练样本的特征字。实验结果表明,神经网络集成改善了传统的特征字比对法不能识别新的病毒,容易被病毒制造者克服的缺点,在保证对Win32PE病毒较高的检测率的同时保持了较低的误检率。 In this paper,for the most harmful Win32PE virus,a new windows virus detection method based on neural network ensembles is proposed.Train the neural network ensembles with negative correlation learning method,use n-gram analyse method to get the key word of the virus and use the entropy difference of the key word to choice the key word as the input.The experiments results indicate that the neural network ensembles improve the performance of the key word comparing method in the new virus detection,keep high detection rate and low false-positive rate.
作者 赵洁 巩文科
出处 《计算机安全》 2008年第5期86-88,共3页 Network & Computer Security
关键词 计算机病毒 神经网络集成 负相关学习 computer virus neural network ensembles negative correlation learning
  • 相关文献

参考文献4

二级参考文献27

  • 1何申,张四海,王煦法,马建辉,曹先彬.网络脚本病毒的统计分析方法[J].计算机学报,2006,29(6):969-975. 被引量:11
  • 2李祥 付继忠 等.计算机病毒递归映射.密码学进展--CHINACRYPT’96[M].北京:科学出版社,1996.279-286.
  • 3李祥,密码学的进展——CHINACRYPT'96,1996年,279页
  • 4Solice P., Krogh A.. Learning with ensembles: How over-Fiting can be useful. In: Touretzky D., Mozer M., Hasselmo M. eds.. Advances in Neural Information Processing Systems, 1995, 7: 231~238.
  • 5Schapire R.E.. The strength of weak learnability. Machine Learning, 1990, 5(2): 197~227.
  • 6Friedman L.. Bagging predictors. Machine Learning, 1996, 24(2): 123~140.
  • 7Jang M., Cho S.. Observational learning algorithm for an ensemble of neural networks. Pattern Analysis & Applications, 2002, 5: 154~167.
  • 8Zhou Z.-H., Wu J.-X., Tang W.. Ensemble neural networks: Many could be better than all. Artificial Intelligence, 2002, 137(1~2): 239~263.
  • 9Zhou Z.-H., Wu J.-X., Tang W., Chen Z.-Q.. Combining regression estimator: GA-based selective neural network Ensemble. International Journal of Computational Intelligence and Applications, 2001, 1(4): 341~356.
  • 10Perrone M.P., Cooper L.N.. When networks disagree: Ensemble method for neural networks. In: Mammone R.J. eds.. Artificial Neural Networks for Speed and Vision, New York: Chapman & Hall, 1993, 126~142.

共引文献62

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部