摘要
针对二维黏性波动方程,利用Crank-Nicolson格式建立了在时间和空间方向具有二阶精度的差分格式,通过添加扰动项进行算子分解,得到了一类局部一维差分格式,证明了该格式按离散L2模具有二阶收敛精度.具体算例验证了算法的有效性和精确性.
By using Crank-Nicolson method a finite difference scheme with two-order accuracy in space and time is proposed for the viscous wave equations of two-dimension. After perturbing a locally one-dimensional finite difference scheme is obtained by decomposing the difference scheme. The scheme is confirmed two-order convergence accuracy in discrete L2 norm. A numerical example proves its accuracy and validity.
出处
《天津师范大学学报(自然科学版)》
CAS
2008年第2期44-47,共4页
Journal of Tianjin Normal University:Natural Science Edition
关键词
黏性波动方程
局部一维有限差分格式
收敛性
误差估计
viscous wave equatiom locally one-dimensional finite difference scheme~ convergence~ error estimate