期刊文献+

一类黏性波动方程的局部一维差分格式

A locally one-dimensional finite difference scheme for a class of viscous wave equations
下载PDF
导出
摘要 针对二维黏性波动方程,利用Crank-Nicolson格式建立了在时间和空间方向具有二阶精度的差分格式,通过添加扰动项进行算子分解,得到了一类局部一维差分格式,证明了该格式按离散L2模具有二阶收敛精度.具体算例验证了算法的有效性和精确性. By using Crank-Nicolson method a finite difference scheme with two-order accuracy in space and time is proposed for the viscous wave equations of two-dimension. After perturbing a locally one-dimensional finite difference scheme is obtained by decomposing the difference scheme. The scheme is confirmed two-order convergence accuracy in discrete L2 norm. A numerical example proves its accuracy and validity.
出处 《天津师范大学学报(自然科学版)》 CAS 2008年第2期44-47,共4页 Journal of Tianjin Normal University:Natural Science Edition
关键词 黏性波动方程 局部一维有限差分格式 收敛性 误差估计 viscous wave equatiom locally one-dimensional finite difference scheme~ convergence~ error estimate
  • 相关文献

参考文献7

  • 1Douglas Jr Jim, Seongjai Kim, Hyeona Lim. An improved alternating-direction method for a viscous wave equation[J]. Contemporary Mathematics, 2003, 329 : 99- 104.
  • 2Dai Weizhong, Raja Nassar. A finite-difference scheme for solving the heat transport equation at the microscale[J]. Journal of Com- putational and Applied Mathematics, 2001, 132: 431-441.
  • 3程爱杰.平面热传导方程Douglas交替方向隐格式的稳定性与收敛性[J].高等学校计算数学学报,1998,20(3):265-272. 被引量:14
  • 4Zhang Jun, Zhao Jennifer J. Unconditionally stable finite difference scheme and iterative solution of 2D microscale heat transport equation[J]. Journal of Computational Physics, 2001, 170: 261-275.
  • 5王彩华,王同科.抛物型方程非齐次边值问题的推广型LOD有限差分及有限元格式[J].高等学校计算数学学报,2006,28(2):138-150. 被引量:8
  • 6胡健伟,汤怀民.微分方程数值方法[M].北京:科学出版社,2003.
  • 7陆金甫,关冶.微分方程数值解法[M].2版.北京:清华大学出版社,2004.

二级参考文献14

  • 1周宝熙(译),分数步法.数学物理中多变量问题的解法,1992年
  • 2郭本瑜,偏微分方程的差分方法,1988年
  • 3Wayne R. Dyksen. Tensor product generalized ADI methods for separable elliptic problems.SIAM J. Numer. Anal., 1987, 24(1): 59-76
  • 4Robert E, Lynch, John Rice R, Donald H. Thomas. Direct solution of partial difference equations by tensor product methods. Numer. Math., 1964, 6:185-199
  • 5Jim Douglas Jr, Gunn J E. A general formulation of alternating direction methods: Part Ⅰ,Parabolic and hyperbolic problems. Numer. Math.,1964, 6:428-453
  • 6Jim Douglas Jr, Seongjal Kim. Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Models Methods Appl. Sci., 2001,11(9): 1563-1579
  • 7Yanenko N N. The method of fractional steps. Springer-Verlag, New York, 1970
  • 8Morris J Lh, Gourlay A R. Modified locally one-dimensional methods for parabolic partial differential equations in two space variables. J. Inst. Math. Appl., 1973, 12:349
  • 9Thomas J W. Numerical partial differential equations(finite difference methods). Springer-Verlag. Reprinted in China by Beijing World Publishing Corporation, 1997
  • 10Jim Douglas Jr, Dupont T. Alternating-direction Galerkin methods on rectangles. Proceedings Symposium on Numerical Solution of Partial Differential Equations, Ⅱ, B.Hubbard ed.,Academic Press, New York, 1971, 133-214

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部