摘要
在所有幂函数经验强度准则中,较为著名的是Bieniawski准则和Balmar准则,利用最小二乘法对两种幂函数型岩石经验强度准则——Bieniawski准则和Balmar准则进行回归分析,比较发现,Bieniawski经验强度准则用最小二乘法进行线性回归求解比较容易,对试验数据拟合也较好,但是不能从准则中求得完整岩石的抗拉强度值;Balmar准则不仅对三轴试验数据拟合程度较高,而且对岩石的抗拉强度值有一个估算,不足之处就是方程会出现虚值问题.
Of all the power function experience intensity criterion, the Bieniawski criterion and the Balmar criterion are best known. We can use the least-squares procedure to do the regression analysis between two empirical strength criterion in power function for rock material, Bieniawski criterion and Balmer criterion. It is discovered that the Bieniawski experience intensity criterion carries on the linear regression with the least squares method to solve is quite easy and also good to the tentative data fitting, but it cannot obtain the complete rock's from the criterion the tensile strength value. The Balmar criterion is not only high to the triaxial test data fitting degree, but also has an estimate to the rock tensile strength value. The deficiency in the equation may bring about the imaginary quantity problem.
出处
《西安建筑科技大学学报(自然科学版)》
CSCD
北大核心
2008年第2期213-217,共5页
Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金
国家自然科学基金重点项目(40534021)
关键词
岩石
经验强度准则
最小二乘法
回归分析
rock,empirical strength criterion least-squares procedure regression analysis