期刊文献+

Ce_(0.8)Sm_(0.1)Gd_(0.1)O_(1.9)电解质的制备及其性能 被引量:3

Preparation and Characterization of Ce_(0.8)Sm_(0.1)Gd_(0.1)O_(1.9)
下载PDF
导出
摘要 通过共沉淀法制备了Sm、Gd共同掺杂的CeO2的前驱体粉末,并将粉末经煅烧、压制、烧结制作成相应的电解质材料。对煅烧得到的电解质粉末及相应的电解质材料的性能进行了表征。实验结果表明:共沉淀法成功制备出了Sm、Gd共同掺杂的CeO2粉末。煅烧所得的电解质粉末具有良好的烧结活性,1400℃下烧结后相对密度达到93.4%。电导率的测试表明,电解质材料在中温范围有较高的电导率,800℃时,其电导率达到了0.076 S.cm-1,有望成为中温固体氧化物燃料电池的电解质材料。 The precursors powders of Sm and Gd co-doped CeO2 were prepared by the co-precipitation method. Then through calcining, pressing and sintering, the final electrolyte materials were obtained . The properties of the electrolyte powders and the final electrolyte materials were characterized. The results showed that the predecessor powders of Sm and Gd co-doped CeO2 were successfully prepared by the co-precipitation method. And the electrolyte powders had a relatively high sinterability whose relative density was reach 93.4% after being sintered at 1400℃. The electrical property testing showed that the final electrolyte materials had the higher electrical conductivity at medium temperature which reach 0. 076S·cm^-1 at 800℃. It is a promising electrolyte material of IT-SOFC.
出处 《硅酸盐通报》 CAS CSCD 北大核心 2008年第1期91-94,共4页 Bulletin of the Chinese Ceramic Society
基金 南昌航空大学自选课题(EC200501014) 南昌航空大学大学生科技创新项目(106068220050)
关键词 中温固体氧化物燃料电池 共沉淀法 掺杂的氧化铈 电导率 IT-SOFC co-precipitation method doped CeO2 electrical conductivity
  • 相关文献

参考文献8

二级参考文献84

  • 1周新木.柠檬酸络盐沉淀法制备超细氧化铈[J].中国稀土学报,2002,20(z3):67-69. 被引量:28
  • 2洪维民,田蓉屏.稀土超微粉末的制备方法及应用[J].稀有金属,1995,19(5):384-389. 被引量:10
  • 3董相廷,曲晓刚,洪广言,于德才,陆天虹,倪嘉缵.CeO_2纳米晶的制备及其在电化学上的应用[J].科学通报,1996,41(9):847-850. 被引量:41
  • 4[1]Souza S de, Visco S J, Jonghe L C de. Thin-film solid oxide fuel cell with high performance at low temperature[J]. Solid State Ionics, 1997,98: 57-61.
  • 5[2]Souza S de, Visco S J, Jonghe L C de. Reduced-temper ature solid oxide fuel cell based on YSZ thin-film elec trolyte[J]. J Electrochem SOc, 1997,144.. L35-L37.
  • 6[3]Huang K, Go, enough J B. A solid oxide fuel cell based on Sr- and Mg- doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer [J ]. J Alloys and Compounds, 2000,303-304:454-464.
  • 7[4]Doshi R, Richards V L, Carter J D, Wang X P et al. Development of solid-oxide fuel cells that operate at 500℃ [J]. J Electrochem Scc, 1999,146:1273-1278.
  • 8[5]Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 per ovskite type oxide as a new oxide ionic conductor[J]. JAm Chem Soc, 1994,116:3801-3803.
  • 9[6]shihara T, Furutani H, Honda M, et al. Improved oxide ion conductivity in La0.8 Sr0.2 Ga0.8 Mg0.2 O3 by dop ing Co[J]. Chem Mater, 1999,11:2081-2088.
  • 10[7]Ishihara T, Shibayama T, Honda M, Nishiguchi H,et al. Intermediate temperature solid oxide fuel cells, using LaGaO3 electrolyte Ⅱ improvement of oxide ion conduc tivity and power density by doping Fe for Ga site of La GaO3[J]. J Electrochem Soc, 2000, 147 (4): 1332- 1337.

共引文献67

同被引文献28

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部