期刊文献+

基于自适应遗传算法的粗糙集知识约简算法 被引量:6

Knowledge reduction algorithm for rough sets base on adaptive genetic algorithm
下载PDF
导出
摘要 为了获得有效的属性最小相对约简,提出了一种基于自适应遗传算法的粗糙集知识约简算法。该算法将核引入遗传算法的初始群体来提高算法的性能,依照决策属性对条件属性的依赖度,在加强局部搜索能力的同时保持了该算法全局寻优的特性,并且对交叉概率和变异概率进行了新的设计。设计中既考虑到进化代数对算法的影响,又考虑到每代中不同个体适应度对算法的作用。最后通过两个经典算例进行了验证,无论在约简的准确性上,还是平均运行代数上都取得了较好的结果。 In order to get the reduction of attribute,the paper proposes a rough set attribute reduction algorithm based on AGA. The core is joined initial population in AGA in order to accelerate capability.According to the dependability of decision attribute to the condition attribute,it can but only obtain the capability of part searching,but also retain the peculiarity of all searching. The adaptive crossover probability and adaptive mutation probability are designed,considering the influence of every generation to algorithm and the effect of different individual fitness in every generation.Experimental results show that the accurate reduction and the average algebraic sum all obtain the preferable values.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第15期1-3,11,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60474069)
关键词 粗糙集 知识约简 自适应遗传算法 交叉概率 变异概率 rough sets knowledge reduction Adaptive Genetic Algorithm(AGA) crossover probability mutation probability
  • 相关文献

参考文献16

  • 1Muthukrishnan S.Data streams:algorithms and applications[C]//Proc of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,2003:413-413.
  • 2金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 3Henzinger M R, Raghavan P, Rajagopalan S.Computing on data streams,SRC Technical Note 1998-011[R].Palo Alto,California:Digital Systems Research Center, 1998.
  • 4Babcock B,Babu S,Datar M,et al.Models and issues in data stream systems[C]//Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,Madison,USA:ACM Press,2002:1-16.
  • 5Arasu A,Babcock B.STREAM:the stanford stream data manager[J]. IEEE Data Engineering Bulletin,2003,26( 1 ) : 19-26.
  • 6Carney D,Cetintemel U.Monitoring streams:a new class of data management applications[C]//Proceedings of the 28th International Conference on Very Large Data Bases,2002:215-226.
  • 7He Zeng-you,Xu Xiao-fei, Deng Sheng-chun.Squeezer :an efficient algorithm for clustering categorical data[J].Joumal of Computer Science and Technology, 2002,17(5 ) :611-624.
  • 8Zhang T,Ramakrishnan R.BIRCH:a efficient data clustering method for very large databases[C]//Proc of ACM SIGMOD Conference on Management of Data, Montreal, Canada 1996.
  • 9Guha S,Meyerson A,MiShra N,et al.Clustering data streams:theory and practice[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(3 ) :515-528.
  • 10Aggarwal C,Han J,Wang J,et al.A framework for clustering evolving data streams[C]//Proc of Int Conf on Very Large Data Bases (VLDB' 03 ), Berlin, Germany, 2003.

二级参考文献52

  • 1Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data streams. In: Popa L, ed. Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems. Madison: ACM Press, 2002. 1~16.
  • 2Terry D, Goldberg D, Nichols D, Oki B. Continuous queries over append-only databases. SIGMOD Record, 1992,21(2):321-330.
  • 3Avnur R, Hellerstein J. Eddies: Continuously adaptive query processing. In: Chen W, Naughton JF, Bernstein PA, eds. Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 261~272.
  • 4Hellerstein J, Franklin M, Chandrasekaran S, Deshpande A, Hildrum K, Madden S, Raman V, Shah MA. Adaptive query processing: Technology in evolution. IEEE Data Engineering Bulletin, 2000,23(2):7-18.
  • 5Carney D, Cetinternel U, Cherniack M, Convey C, Lee S, Seidman G, Stonebraker M, Tatbul N, Zdonik S. Monitoring streams?A new class of DBMS applications. Technical Report, CS-02-01, Providence: Department of Computer Science, Brown University, 2002.
  • 6Guha S, Mishra N, Motwani R, O'Callaghan L. Clustering data streams. In: Blum A, ed. The 41st Annual Symp. on Foundations of Computer Science, FOCS 2000. Redondo Beach: IEEE Computer Society, 2000. 359-366.
  • 7Domingos P, Hulten G. Mining high-speed data streams. In: Ramakrishnan R, Stolfo S, Pregibon D, eds. Proc. of the 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Boston: ACM Press, 2000. 71-80.
  • 8Domingos P, Hulten G, Spencer L. Mining time-changing data streams. In: Provost F, Srikant R, eds. Proc. of the 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. San Francisco: ACM Press, 2001. 97~106.
  • 9Zhou A, Cai Z, Wei L, Qian W. M-Kernel merging: Towards density estimation over data streams. In: Cha SK, Yoshikawa M, eds. The 8th Int'l Conf. on Database Systems for Advanced Applications (DASFAA 2003). Kyoto: IEEE Computer Society, 2003. 285~292.
  • 10Gibbons PB, Matias Y. Synopsis data structures for massive data sets. In: Tarjan RE, Warnow T, eds. Proc. of the 10th Annual ACM-SIAM Symp. on Discrete Algorithms. Baltimore: ACM/SIAM, 1999. 909-910.

共引文献160

同被引文献68

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部