期刊文献+

Positive Solutions of Sub-Linear Semi-Positone Boundary Value Problem System

Positive Solutions of Sub-Linear Semi-Positone Boundary Value Problem System
下载PDF
导出
摘要 In this paper, we study the existence of positive solutions of a sub-linear semi-positone differential boundary value problems system with positive parameter. We prove that the semipositone differential boundary value problems system has at least one positive solution for the parameter sufficiently large. In this paper, we study the existence of positive solutions of a sub-linear semi-positone differential boundary value problems system with positive parameter. We prove that the semipositone differential boundary value problems system has at least one positive solution for the parameter sufficiently large.
作者 XU Xi An
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第2期305-315,共11页 数学研究与评论(英文版)
基金 Foundation item: the National Natural Science Foundation of China (No. 10671167)
关键词 semi-positone differential boundary value problems system the fixed point index positive solutions semi-positone differential boundary value problems system the fixed point index positive solutions
  • 相关文献

参考文献1

二级参考文献12

  • 1Feng, W.: On a m-point nonlinear boundary value problem. Nonlinear Analysis TMA, 30(6), 5369-5374(1997).
  • 2Ma, R.: Existence theorems for a second order m-point boundary value problem. J. Math. Anal. Appl.,211,545-555 (1997).
  • 3Stanek, S.: On some boundary value problems for second order functional differential equations. Nonlinear Analysi.s TMA, 28(3), 539-546 (1997).
  • 4Guo, D. J. and Lakshmikantham, V.: Nonlinear Problems in Abstract Cones, Academic Press, San Diego(1988).
  • 5Anuradha, V., Hai, D. D. and Shivaji, R.: Existence results for superlinear semipositone boundary value problems. Proc. Amer. Math. Soc., 124(3), 757-763 (1996).
  • 6Mawhin, J.: "Topological Degree Methods on Nonlinear Boundary Value Problems". NSF-CBMS Regional Conference Series in Math., Vol. 40, Amer. Math. Soc., Providence, RI (1979).
  • 7II'in, V. A. and Moiseev, E. I.: Nonlocal bomldary value problem of the second kind for a Sturm-Liouville operator. Differential Equations, 23(8), 979-987 (1987).
  • 8Gupta, C. P.: A generalized multi-point boundary value problem for second order ordinary differential equations. Appl. Math. Comput., (89), 133-146 (1998).
  • 9Ma, R.: Positive solutions of a nonlinear three-point boundary value problem. Electronic Journal of Differential Eauations, 34, 1-8 (1999).
  • 10Feng, W. and Webb, J. R. L.: Solvability of a m-point boundary value problems with nonlinear growth. J.Math. Anal. Aggl., 212, 467-480 (1997).

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部