摘要
研究了一类五阶有理差分方程xn+1=F(xn,xn-1,xn-3,xn-4)/G(xn,xn-1,xn-3,xn-4),其中F(xn,xn-1,xn-3,xn-4)=xnxn-1+xnxn-3+xnxn-4+xn-1xn-3+xn-1xn-4+xn-3xx-4+xnxn-1xn-3xn-4+1,G(xn,xn-1,xn-3,xn-4)=xn+xn-1+xn-3+xn-4+xnxn-1xn-3+xnxn-1xn-4+xnxn-3xn-4+xn-1xn-3xn-4,初值x-4,x-3,x-2,x-1,x0∈(0,+∞),a∈[0,∞),N=0,1,….研究表明:随着初值的变化,该方程非平凡解的正、负半环长度规律为…,4+,2,1+,1-,1+,1,2+,1,3+,1,1+,5,1+,2,2+,3-,4+,2,1+,1-,1+,1,2+,1,3+,1,1+,5,1+,2,2+,3-….利用这个规律,证明了该方程的正平衡点是全局渐近稳定的.
The fifth - order rational difference equation is xn+1 = F( xn,xn-1 ,xn-3 ,xn-4 ) /G( xn ,xn-1 ,xn-3 ,xn-4 ) ,where F(xn,xn-1 ,xn-3 ,xn-4 ) = xn xn-1 + xnxn-3 + xnxn-4 + xn-1xn-3 + xn-1xn-4 + xn-3xn-4 + xn,xn-1 ,xn-3 ,xn-4 + 1, G( xn,xn-1 ,xn-3 ,xn-4 ) = xn+xn-1 +xn-3+xn-4 + xnxn-1xn-3+xnxn-1xn-4+xnxn-3xn-4+xn-1xn-3xn-4,The initial values x-4,x-3,x-2,x-l ,x0 ∈ (0, + ∞ ) a ∈[0,∞ ) ,N=0,1,…. It is found that, with change of the initial values, the rule for the lengths of positive and negative semi - cycles for nontrlvial solutions of this equation to successively occur is … ,4^+ ,2,1 ^+ ,1^- ,1 ^+ ,1,2^+ ,1,3 ^+ ,1,1 ^+ ,5,1 ^+ ,2,2 ^+ ,3^- ,4^+ ,2,1^+ ,1^- ,1^ + ,1,2^+ ,1,3 ^+ ,1,1^ + ,5,1 ^+ ,2,2^+ ,3^- …
By the use of the rule, we proved that the positive equilibrium point of the equation is globally asymptotically stable.
出处
《黄石理工学院学报》
2008年第2期53-55,58,共4页
Journal of Huangshi Institute of Technology
关键词
有理差分方程
轨道结构规律
全局渐近稳定性
半环长
rational difference equation
trajectory structure rule
global asymptotic stability
semi -cycle length