期刊文献+

一类差分方程的轨道结构和全局渐近稳定性(英文)

The Rule of Trajectory Structure and Global Asymptotic Stability for a Kind of Nonlinear Difference Equation
下载PDF
导出
摘要 研究了一类五阶有理差分方程xn+1=F(xn,xn-1,xn-3,xn-4)/G(xn,xn-1,xn-3,xn-4),其中F(xn,xn-1,xn-3,xn-4)=xnxn-1+xnxn-3+xnxn-4+xn-1xn-3+xn-1xn-4+xn-3xx-4+xnxn-1xn-3xn-4+1,G(xn,xn-1,xn-3,xn-4)=xn+xn-1+xn-3+xn-4+xnxn-1xn-3+xnxn-1xn-4+xnxn-3xn-4+xn-1xn-3xn-4,初值x-4,x-3,x-2,x-1,x0∈(0,+∞),a∈[0,∞),N=0,1,….研究表明:随着初值的变化,该方程非平凡解的正、负半环长度规律为…,4+,2,1+,1-,1+,1,2+,1,3+,1,1+,5,1+,2,2+,3-,4+,2,1+,1-,1+,1,2+,1,3+,1,1+,5,1+,2,2+,3-….利用这个规律,证明了该方程的正平衡点是全局渐近稳定的. The fifth - order rational difference equation is xn+1 = F( xn,xn-1 ,xn-3 ,xn-4 ) /G( xn ,xn-1 ,xn-3 ,xn-4 ) ,where F(xn,xn-1 ,xn-3 ,xn-4 ) = xn xn-1 + xnxn-3 + xnxn-4 + xn-1xn-3 + xn-1xn-4 + xn-3xn-4 + xn,xn-1 ,xn-3 ,xn-4 + 1, G( xn,xn-1 ,xn-3 ,xn-4 ) = xn+xn-1 +xn-3+xn-4 + xnxn-1xn-3+xnxn-1xn-4+xnxn-3xn-4+xn-1xn-3xn-4,The initial values x-4,x-3,x-2,x-l ,x0 ∈ (0, + ∞ ) a ∈[0,∞ ) ,N=0,1,…. It is found that, with change of the initial values, the rule for the lengths of positive and negative semi - cycles for nontrlvial solutions of this equation to successively occur is … ,4^+ ,2,1 ^+ ,1^- ,1 ^+ ,1,2^+ ,1,3 ^+ ,1,1 ^+ ,5,1 ^+ ,2,2 ^+ ,3^- ,4^+ ,2,1^+ ,1^- ,1^ + ,1,2^+ ,1,3 ^+ ,1,1^ + ,5,1 ^+ ,2,2^+ ,3^- … By the use of the rule, we proved that the positive equilibrium point of the equation is globally asymptotically stable.
出处 《黄石理工学院学报》 2008年第2期53-55,58,共4页 Journal of Huangshi Institute of Technology
关键词 有理差分方程 轨道结构规律 全局渐近稳定性 半环长 rational difference equation trajectory structure rule global asymptotic stability semi -cycle length
  • 相关文献

参考文献4

  • 1R. P. Agarwal. Difference Equations and Inequalities [M]. New York: Marcel Dekker, 1992:78-90
  • 2V. L. Kocid, G. Ladas. Global behavior of nonlinear equations of higher order with applications [ M ]. Dordrecht : Kluwer Academic Publishers, 1993 : 100 - 156
  • 3Xianyi Li, Deming Zhu. The rule of semieyele and global asymptotic stability for a fourth - order rational differenee equation [ J ]. Computers and Mathematics with Applieations, 2005, 49 : 723 - 730
  • 4E. Camouzis, R. Devauh, G. Papaschinopoulos. On the recursive sequence xn+1 = γxn-1 + δxn-2xn + xn-2 [ J ]. Adv. Difference Equ. 2005, 1 : 31 - 40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部