期刊文献+

关于轮W_n的倍图的邻强边色数 被引量:1

On the Adjacent Strong Edge-chromatic Number of Double Graph of W_n
下载PDF
导出
摘要 图G的一个正常边染色称作邻强边染色,若任意相邻两个的点的染色集合不相同,给图G进行邻强边染色所需的最少颜色数,称为图G的邻强边色数,此文讨论了轮的倍图的邻强边色数.即若Wn为n+1阶轮,则αs′(D(Wn))=2n(n≥4). Proper edge coloring of G is called adjacent-strong,if for arbitrary two adjacent vertices with are incident to different sets of colored edges, then the minimum number require for an adjacent-strong edge coloring of G is called the adjacent-strong edge chromatic number. The adjacent strong edge chro- matic numbers on double graph of the wheel are discussed in this paper. If Wn is a wheel withorder n + 1 ,then xas′(D(Wn)) = 2n(n ≥ 4).
出处 《甘肃联合大学学报(自然科学版)》 2008年第3期22-23,共2页 Journal of Gansu Lianhe University :Natural Sciences
基金 国家自然科学基金资助项目(10771091)
关键词 倍图 邻强边染色 邻强边色数 wheel double graph adjacent-strong edge coloring adjacent-strong edge chromatic number
  • 相关文献

参考文献1

  • 1ZHANG Zhongfu,LI Jingwen,CHEN Xiang’en,YAO Bing, WANG Wenjie & QIU Pengxiang Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.D(β)-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2006,49(10):1430-1440. 被引量:56

二级参考文献2

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2张忠辅,王建方.关于图的全着色——一个综述[J].数学进展,1992,21(4):390-397. 被引量:60

共引文献55

同被引文献6

  • 1林祺,束金龙.变换图的正则性和谱半径[J].运筹学学报,2007,11(1):102-110. 被引量:7
  • 2ZHANG Zhong-fu, LIU Lin-zhong, WANG Jian-fang. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letters, 2002 (15) : 623-626.
  • 3SAJVART H, BIDKHORI, N. Nosrati, r-strong edge coloring of graph[J]. D M, 2006,306(23) : 3005-3010.
  • 4LI J W,ZHANG Z F,CHEN X E,et al. A note on adjacent strong edge coloring of [J]. Acta Mathematica Applicatae Sinica, 2006,22 (2) : 273-276.
  • 5BONDY J A,MURTY U S R. Graph Theory with application[ M]. New york: The Macmillan Press Ltd, 1976.
  • 6WU Bao, YIN du-reng, ZHANG Li, et al. Note the transformation graph when [J]. Discrete Mathsmatics, 2005,296 : 263-270.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部