期刊文献+

求解非线性互补问题的混合遗传算法

A hybrid genetic algorithm for nonlinear complementarity problems
下载PDF
导出
摘要 提出一个求解非线性互补问题的混合遗传算法,即首先将非线性互补问题转化为等价的最优化问题,然后利用浮点遗传算法全局群体搜索能力及起始搜索速度快的特点,快速得到接近精确解的近似解。之后将其作为牛顿法或拟牛顿法的初始值,利用其局部寻优能力非常强的特点,快速迭代至满足精度要求的数值解。该混合遗传算法充分利用了浮点遗传算法和(拟)牛顿法的各自优点。数值结果表明该方法是有效的。 In this paper, we propose a hybrid genetic algorithm for solving nonlinear complemen-tarity problems (denoted by NCP). First, we transform NCP into the equivalent optimization problems. Then we use the floating genetic algorithms to gain the superior results which is close to precise solutions. These results are then taken as the initial values of Newton or quasi-Newton iterations, which have strong ability in locally converging to precise solution. We obtain satisfactory approximation solutions. the floating genetic algorithm and Newton-typemethods. the given problem. The hybrid genetic algorithm absorbs fully the merits of Numerical results show that this method is effective for the given problem.
作者 叶海 马昌凤
出处 《桂林电子科技大学学报》 2008年第2期108-110,共3页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(10661005) 广西自然科学基金(桂科自0640165)
关键词 非线性互补问题 混合遗传算法 牛顿法 拟牛顿法 nonlinear complementarity problem hybrid genetic algorithm Newton method quasi-Newton method
  • 相关文献

参考文献5

  • 1HARKER P T, PANG J S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications [J]. Mathematical Programming, 1990, 48: 161-220.
  • 2FERRIS M C, PANG J S. Engineering and economic applications of complementarity problems[J]. SIAM Review, 1997, 39:669-713.
  • 3吴国辉,代冀阳,吴印华,朱国民.一种新的求解非线性方程组的混合遗传算法[J].南昌航空工业学院学报,2007,21(1):5-9. 被引量:6
  • 4KANZOW C. Some noniterior continuation methods for linear complementarity problem [J]. SIAM J. Matrix Anal. Appl. , 1996, 17:851-868.
  • 5JIANG H Y, QI L. A new nonsmooth equastions approaeh to nonlinear complementarity problems[J]. SIAM J. Control Optim. , 1997, 35:178-193.

二级参考文献10

  • 1曾毅.浮点遗传算法在非线性方程组求解中的应用[J].华东交通大学学报,2005,22(1):152-155. 被引量:20
  • 2张建科,王晓智,刘三阳,张晓清.求解非线性方程及方程组的粒子群算法[J].计算机工程与应用,2006,42(7):56-58. 被引量:37
  • 3马振华,顾丽珍,陈景良,等.现代应用数学手册[M].北京;清华大学出版社,2005.119—128.
  • 4Dedieu J P,Kim M.Newton's method for analytic systems of equations with constant rank derivatives[J].J Complexity,2002,18:187:209
  • 5Audet C,Dennis Jr J E.A Patter Search Filter Methods for Nonlinear Programming without Derivatives.SIAM Journal on Optimization,2004,14:980-1010
  • 6Ulbrich M,Ulbrich S,Vicente L N.A Globally Convergent Primal-dual Interior-point Filter Method for Nonconvex Nonlinear Programming.Mathematical Programming,2004,100:379-410
  • 7Karr C L,Weck,Barry,Freeman L M.Solutions to systems of nonlinear equations via a genetic algorithm[J].Engineering Applications of Artificial Intelligence,1998,11(3):369-375.
  • 8Sonia krzyworcka.Extension of the Lanczos and CGS methods to systems of nonlinear equations[J].Journal of Computational and Applied Mathematics,1996,69(1):181-190.
  • 9蔡春.一类非线性方程组的改进牛顿算法[J].北京联合大学学报,2002,16(4):65-68. 被引量:1
  • 10刘灿文,刘婕.基于求解非线性方程组的并行遗传算法的设计[J].华东师范大学学报(自然科学版),2004(1):29-34. 被引量:4

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部