期刊文献+

CuSCN薄膜的室温液相沉积及其光学性能 被引量:3

CuSCN Thin Film Deposited from Solutions at Room Temperature and its Optical Properties
下载PDF
导出
摘要 采用连续离子层吸附与反应(SILAR)方法,在室温液相条件下(20~25℃)制备了沉积于玻璃衬底上的CuSCN半导体薄膜,以X射线衍射、扫描电镜、光学透过谱考察了所得薄膜的晶体结构、微观表面断面形貌和光学性能,探讨了影响CuSCN薄膜沉积的关键因素.结果表明,所得薄膜具有明显结晶性及沿c轴择优生长趋势,表面致密、均匀,分别由50~100nm的较大颗粒和20~30nm的小颗粒紧密堆聚而成;薄膜在400~800nm波段的透过率为50%~70%,光学禁带宽度为3.94eV.CuSCN薄膜的沉积过程受铜前驱液中S_2O_3^(2-)与Cu^(2+)的摩尔比、衬底漂洗方式和生长温度等因素影响显著,高络离子浓度、多次沉积反应后再进行衬底漂洗、以及室温生长条件有利于得到高质量的CuSCN薄膜. CuSCN thin film was deposited on glass substrate from solutions at room temperature (20-25℃) by the successive ionic layer adsorption and reaction (SILAR) method. The crystalline structure, morphology, and optical properties of obtained film were characterized by X-ray diffraction, scanning electron microscope, and optical transmittance. The key parameters influencing the deposition of CuSCN on substrate were discussed briefly. The CuSCN film exhibits obvious crystallinity, preferential orientation along c-axis, and dense and uniform morphology. Two classes of CuSCN particles are observed, the larger particles in size of 50-100nm and the smaller ones in size of 20-30nm. The transmittance of the film at the band of 400-800nm is 50%-70%, and the optical band gap is estimated to be 3.94eV. Mechanism analysis indicates that the growth of CuSCN film is affected significantly by three factors, namely, the molar ratio of S2O^2-3 to Cu^2+ in the copper precursor, the substrate rinsing mode, and the growth temperature. The relatively high concentration of complex ions, the substrate-rinsing after multiple reaction cycles, and the room-temperature deposition are beneficial to the growth of high quality CuSCN film.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2008年第3期535-539,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(50502038) 上海市自然科学基金(05ZR14132) 上海-应用材料研究与发展基金(06SA07)
关键词 CUSCN 薄膜 连续离子层吸附与反应 SILAR 光学性能 CuSCN thin film successive ionic layer adsorption and reaction SILAR optical property
  • 相关文献

参考文献9

  • 1杨惠芳,肖凤娟,顾业强,彭政,米镇涛.液相沉淀法制备硫氰酸亚铜纳米颗粒[J].人工晶体学报,2004,33(6):965-968. 被引量:6
  • 2Rost C, Sieber I, Fischer C, et al. Mater. Sci. Eng. B, 2000, 69-70 (1): 570-573.
  • 3Li B, Wang L, Kang B, et al. Solar Energy Materials and Solar Cells, 2006, 90 (5): 549-573.
  • 4Sankapal B R, Goncalves E, Ennaoui A, et al. Thin Solid Films, 2004, 451-452 (1): 128-132.
  • 5Wu W, Jin Z, Hua Z, et al. Electrochimica Acta, 2005, 50 (11): 2343-2349.
  • 6Bunker B C, Rieke P C, Tarasevich B J, et al. Science, 1994, 264 (5155): 48-55.
  • 7高相东,李效民,于伟东.超声辅助SILAR法生长纳米晶ZnO多孔薄膜及其光学性能研究[J].无机材料学报,2005,20(4):965-970. 被引量:8
  • 8Nicolau Y F, Menard J C. Journal of Crystal Growth, 1988, 92 (1/2): 128-142.
  • 9Lindroos S, Charreire Y, Bonnin D, et al. Materials Research Bulletin, 1998, 33 (3): 453-459.

二级参考文献17

  • 1Services F R. Science, 1997, 276: 895.
  • 2Tang Z K, Wang G K L, Yu P, et al. Appl. Phys. Lett., 1998, 72: 3270-3272.
  • 3Yamamoto T, Yoshida H K. Physica B, 2001, 302/303: 155-162.
  • 4Studenikin S A, Golego N, Cocivera M. J. Appl. Phys., 1998, 84: 2287-2294.
  • 5Lin B, Fu Z. Appl. Phys. Lett., 2001, 79: 943-945.
  • 6Shim E S, Kang H S, Pang S S, et al. Materials Science and Engineering B, 2003, 102: 306-309.
  • 7Jina B J, Imb S, Lee SY. Thin Solid Films, 2000, 366: 107-110.
  • 8Suslick K S, Choe S B, Cichowlas A A, et al. Nature, 1991, 353: 414-416.
  • 9Harpeness R, Palchik O, Gedanken A. Chem. Mater., 2002, 14: 2094-2102.
  • 10Zhoua S M, Fengb Y S, Zhang L D. Materials Letters, 2003, 57: 2936-2939.

共引文献12

同被引文献30

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部