期刊文献+

一种改进的基于经验模态分解的小波阈值滤波方法 被引量:5

An improved Speech Enhancement method based on Empirical Mode Decomposition and Wavelet Transform
下载PDF
导出
摘要 经验模态分解是一种新的信号分解方法,该方法可将非线性非平稳信号分解成若干个单分量的本征模态函数,使得每个本征模态函数都具有一定的物理意义。本文探索了该方法在语音增强方面的应用.在文献[8]的基础上,对其方法进行了有效改进。首先将带噪语音进行经验模态分解,得到六个本征模态函数和一个余量信号,对这七个信号分别进行小波阈值滤波,并由滤波后的七个信号重构语音。结果表明,该方法的滤波效果明显优于对带噪语音直接采用小波阈值滤波的方法,并且较之文献[8]的滤波方法也具有一定的优势。 Empirical mode decomposition is a new method for signal analysis. Using this method,nonlinear and nonstationary signals can be decomposed into several intrinsic mode functions, and each IMF has its own physical meaning. The paper discusses the application of this method in speech enhancement. Based on literature[ 8 ] ,this paper has improved the method in literature [ 8 ]. Firstly, decompose the noisy speech into six IMFs and a residual signal with the EMD method;secondly, apply soft threshold with wavelet transform to each signal and get seven new signals;at last rebuild the speech from the seven new signals. Experiments show that this method is more effective than using soft threshold method with wavelet transform and the similar method proposed in paper[ 8 ].
出处 《信号处理》 CSCD 北大核心 2008年第2期237-241,共5页 Journal of Signal Processing
基金 国家高技术研究发展计划(2006AA01Z146)专项经费资助
关键词 经验模态分解 本征模态函数 小波变换 Empirical Mode Decomposition Intrinsic Mode Function Wavelet Transform
  • 相关文献

参考文献9

  • 1E. Huang,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstasionary time series analysis [ J ]. Proc. R. Lond. A, 1998,454 : 903 - 995.
  • 2李弼程,罗建书.小波分析及其应用.北京:电子工业出版社,2005.
  • 3Donoho D L, De-noising by soft thresh-olding [ J ]. IEEE Trans Inform Theory, 1995,41 (3) : 613- 627.
  • 4Patrick Flandrin, Gabriel Rilling ang Paulo Goncalves. Empirical Mode Decompossing as a Filter Bank [ J ]. IEEE Signal Processing Letters ,2004,11 (2) : 112-114.
  • 5王明阳,柳征,周一宇.基于希尔波特-黄变换的冲击无线电信号检测[J].信号处理,2006,22(4):581-584. 被引量:6
  • 6杨志华,齐东旭,杨力华.一种基于Hilbert-Huang变换的基音周期检测新方法[J].计算机学报,2006,29(1):106-115. 被引量:19
  • 7江力,李长云.基于经验模分解的小波阈值滤波方法研究[J].信号处理,2005,21(6):659-662. 被引量:19
  • 8ZHUO-FU LIU, ZHEN-PENG LIAO, EN-FAN SANG. SPEECH ENHANCEME-NT BASED ON HILBERT- HUANG TRANSFORM. Proceedings of the Fourth International Conference on Machine Leafing and Cyhenetics, Guangzhou,2005:4908-4912.
  • 9Strang G, Nguyen T. Wavelets and filter banks [M]. Wellesley-Cambridge, 1996.

二级参考文献19

  • 1Kadambe S., Boudreaux Barrels G,F., Application of the wavelet transform for pitch detection of speech signals. IEEE Transactions on Information Theory, 1992, 38(2): 917-924.
  • 2Strube H, W., I)etermination of the instant of glottal closure from the speech wave. Journal of the Acoustical Society of America, 1974, 56(5):1625-1629.
  • 3Ananthapadmanabha T. V, , Yegnanarayana B.. Epoch extraction of voiced speech. IEEE Transactions on Acoust, Speech,Signal Processing, 1975, 23(6):562-570.
  • 4Ananthapadmanabha T. V. , Yegnanarayana B,. Epoch extraction from linear prediction residual for identification of closed glottis interval. IEEE Transacions on Acoust, Speech, Signal Processing, 1979, ASSP 27(4): 309-319.
  • 5Cheng Y, M. , O'Shaughnessy D.. Automatic and reliable estimation of glottal closure instant and period. IEEE Transactions on Acoust, Speech, Signal Processing, 1989, 37(12):1805-1815.
  • 6Huang N, E. , Shen Z. , I.ong S, R. et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London, 1998, A(454):903-995.
  • 7Titchmarsh E, C,, Introduction to the Theory of Fourier Integrals, Oxford University Press, 1948.
  • 8Kiritani S., Imagawa H., Hirose H.. Vocal cord vibration and voice source characteristics observation by high speed digital image recording. In: Proceedings of ICSLP'90, Kobe, Japan, 1990, 61-64.
  • 9Donoho D L.Adapting to unknown smoothmess via waveletshrinkage[J].J.Amer.Statist.Assoc.1995,90:1200—1224.
  • 10Donoho D L,Johnstone I.Wavelet shrinkage asymptopia[J].Joumal of Royal Statistical Society,1995,57(2):301-369.

共引文献41

同被引文献48

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部