期刊文献+

一种基于小波变换的脑电信号癫痫特征波的识别算法 被引量:4

Analyzing Research of EEG Signal Based on Sparse Representation Model
下载PDF
导出
摘要 目的通过选取小波变换的多尺度特性算法,能够快速而准确的从脑电图信号中识别癫痫特征波。方法确定癫痫脑电的3种特定的病态波形,选取小波变换的多尺度特性算法,分析处理16导标准脑电信号。结果分离出癫痫特征波,并对特征波进行识别,从而得到对癫痫的诊断;在此基础上将癫痫特征波反映射到16导标准电极,应用相关源电位软件对癫痫灶进行初步定位。结论小波变换的多尺度特性算法可以实现对癫痫脑电信号特征波的自动检测和病灶定位,有助于临床诊断和筛查癫痫。 Objective: To verify that the algorithm can identify EEG signal wave of epilepsy quickly and accurately. Methods: EEG epilepsy identified three specific pathological waveform, to select the wavelet transform algorithm of multi-scale analysis with the standard 16 - EEG. Results: isolate the wave of epilepsy and a wave of recognition, resulting in the diagnosis of epilepsy; On this basis, reflect the wave of strikes into epilepsy-16 standard electrode potential source software applications related to the initial positioning of epileptic foci. Conclusion: Multi-scale wavelet transform algorithm can implement the right of epileptic EEG waves of automatic detection and localization, clinical diagnosis and screening contribute to epilepsy.
出处 《中国医疗设备》 2008年第4期21-24,共4页 China Medical Devices
关键词 小波变换 脑电图 癫痫 电生理学检测 wavelet transform EEG epilepsy electrophysiology detection
  • 相关文献

参考文献7

二级参考文献22

共引文献43

同被引文献36

  • 1李莹,欧阳楷.自动检测儿童脑电中癫痫波的方法研究[J].中国生物医学工程学报,2005,24(5):541-545. 被引量:6
  • 2张美云,张本恕,王凤楼.子波变换在癫痫脑电信号检测和分析中的应用[J].国际生物医学工程杂志,2006,29(4):255-258. 被引量:5
  • 3余晓洁.小波变换在心电图R波检测中的应用[J].中国传媒大学学报(自然科学版),2007,14(1):59-62. 被引量:2
  • 4宋立国,陆尧胜.小波分析在脑电信号处理中的应用[J].医疗设备信息,2007,22(7):7-10. 被引量:9
  • 5Sanai N,Mirzadeh Z,Berger MS.Functional outcome after language mapping for glioma resection[J].N Engl J Med, 2008,358(1):18-27.
  • 6Schalk G, Kubanek J, Miller KJ, et al.Decoding two- dimensional movement trajectories using electrocortico-graphic signals in humans[J].J Neural Eng,2007,4(3):264-275.
  • 7Pfurtscheller G, Lopes da Silva FH.Event-related EEG/MEG synchronization and desynchronization: basic prin-ciples[J].Clin Neurophysiol, 1999,110(11):1842-1857.
  • 8Canolty RT, Edwards E, Dalal SS, et al.High gamma power is phase-locked to theta oscillations in human neocortex[J]. Science, 2006,313(5793):1626-1628.
  • 9Berger MS,Hadjipanayis CG. Surgery of intrinsic cerebral tumors[J].Neurosurgery,2007,61(S1):279-305.
  • 10GUERRERO-MOSQUERA C, TRIGUEROS A M, FRAN- CO J I, et al. New feature extraction approach for epileptic EEG signal detection using time-frequency distributions[J]. Med Biol Eng Comput, 2010, 48(4): 321-330.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部