期刊文献+

不完备信息系统中的可变精度分类粗糙集模型 被引量:17

Rough set model based on variable parameter classification in incomplete information systems
原文传递
导出
摘要 在不完备信息系统中,容差关系过于宽松,而相似关系则过于严格.根据这样的解释,提出了一种新的基于可变精度分类的拓展粗糙集模型,其中的分类方式相比较于容差关系和相似关系显得更为灵活,是这两者的一种广义化表现形式,且可变精度分类也是限制容差关系的一种改进形式.在此基础上,将这种拓展粗集模型与基于容差关系和相似关系的拓展粗集模型进行了对比分析.最后在不完备信息系统中使用新的拓展粗集模型讨论了确定和可能性规则的直接生成方法,并进行了实例分析以说明其有效性. In incomplete information systems, the tolerance relation is too loose while the similarity relation is too strict. Aeeording to these explanations, a new kind of rough set model that is based on the variable parameter classification of objects is proposed. The variable parameter classification is a kind of generalized classification form and it is more flexible than tolerance and similarity relations in practical applications. Furthermore, it can be regarded as an improvement of the limited tolerance relation. From what have been discussed above, the new-defined generalized rough set model is compared with expanded rough sets those are on the basis of tolerance and similarity relations. Finally, the immediate method of certain and possible rules' induction is studied by the new expanded rough set model, an illustrative example is used to show its validity.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第5期116-121,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60472060,60572034,60632050) 江苏省自然科学基金(BK2006081)
关键词 不完备信息系统 容差关系 相似关系 可变精度分类 粗糙集 incomplete information system tolerance relation similarity relation variable parameter elassifieation rough sets
  • 相关文献

参考文献14

  • 1Pawlak Z. Rough set theory and its applications to data analysis[J]. Cybernetics and Systems, 1998,29:661 - 688.
  • 2Pawlak Z. Rough sets and intelligent data analysis[J]. Information Sciences,2002,147:1 - 12.
  • 3刘清.Rough集及Rough推理[M].科学出版社,2001,3.
  • 4王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243. 被引量:303
  • 5Grzymala-Busse J W. On the unknown attribute values in learning from examples[J]. In Proceeding of the 6th International Symposium on Methodologies for Intelligent Systems(ISMIS-91 ), Charlotte,North Carolina, October 16- 19,1991. Lecture Notes in Artificial Intelligence, vol. 542, Springer-Verlag, Berlin, Heidelberg, New York ( 1991 ) 368 - 377.
  • 6Kryszkiewicz M. Rough set approach to incomplete information systems[J]. Information Sciences, 1998,112: 39- 49.
  • 7Yee Leung, Deyu Li. Maximal consistent block technique for rule acquisition in incomplete information systems [ J ]. Information Sciences,2003,15:85 - 106.
  • 8吴陈,杨习贝,傅凡.基于全相容性粒度的粗糙集模型[J].系统工程学报,2006,21(3):292-298. 被引量:4
  • 9Grzymala-Busse J W,Wang A Y. Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values [ C]//In Proceeding of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC'97) at the Third Joint Conference on Information Sciences (JCIS' 97), Research TrianglePark, NC, March 2 - 5,1997,69 - 72.
  • 10Stefanowski J, Tsoukias A. Incomplete information tables and rough classification[ J ]. Computational Intelligence, 2001,17: 545- 566.

二级参考文献13

  • 1Kryszkiewicz M. Rules in incomplete information systems[ J]. Journal of Information Sciences, 1999, (113): 271-292.
  • 2Kryszkiewicz M. Rough set approach to incomplete information systems[ J]. Journal of information Sciences, 1998, (112) : 39-49.
  • 3Zhu W, Wang F Y. Reduction and axiomization of covering generalized rough sets[J]. Journal of Information Sciences, 2003,(15) : 217-230.
  • 4Nguyen S H, Skowron A. Granular computing: A rough set approach[ J]. Journal of Computational Intelligence, 2001, 17 (3):514-542.
  • 5张文修,吴伟志.粗集理论及其应用[M].西安:西安交通大学出版社,2001.
  • 6Liang J Y, Xu Z B. Uncertainty measures of roughness of knowledge and rough sets in incomplete information systems[ A]. In:Proc. of the 3rd World Congress on Intelligent Control and Automation[C]. 2000, (14) : 2526-2529.
  • 7Pawlak Z. Rough sets[ J]. International Journal of Computer and Information Sciences, 1984, (11): 341-356.
  • 8Pawlak Z. Rough set theory and its apphcations to data analysis[J]. Journal of Cybernetics and Systems, 1998, (29) : 661-688.
  • 9Pawlak Z. Rough sets and intelligent data analysis[ J]. Journal of Information Sciences, 2002, (147): 1-12.
  • 10刘清.Rough集与Rough推理[M].北京:科学出版社,2001.

共引文献306

同被引文献180

引证文献17

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部