期刊文献+

BP神经网络补偿并联机器人定位误差 被引量:29

Positioning error compensation for a parallel robot based on BP neural networks
下载PDF
导出
摘要 分析了6-DOF精密并联机器人末端位姿的误差来源及以往误差补偿方法的局限性。通过测量末端位姿,提出了基于BP神经网络在精密定位的局部工作空间内对机器人关节空间进行误差补偿的方法。确定了BP神经网络模型,建立了误差补偿的数据样本,并对数据样本进行了标准化。用实验对比的方法确定了隐层神经元的个数,同时对网络的推广能力进行了验证。经过误差补偿,6-DOF精密并联机器人的平移定位误差下降了80%,转角定位误差下降了60%。实验结果表明,基于BP神经网络的误差补偿方法对机器人局部工作空间的补偿具有明显的效果,能够满足精密并联机器人工作的精度要求。 The main error sources and the limitations of conventional error compensation for the 6-DOF precision parallel robot were discussed. An error compensation method based on Back Propagation (BP) neural network for the articulatory space of a parallel robot was presented in the local workspace of precision positioning by measuring the end pose. BP neural network model and datum sample of error compensation were established, and the datum sample was standardized. By the experiment, the numbers of node in hidden layer was obtained. In order to improve the generalization performance, the overfitting was prevented in the network training. After error compensation, the positioning error and the orientation error reduced by 80% and 60%, respectively. The experimental results show that the error compensation based on B1c neural network has an obvious effect on that of the articulatory space of parallel robot, which satisfies the accuracy requirement of the precision parallel robot.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2008年第5期878-883,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50605013) 教育部高等学校重点学科建设项目 上海市重点学科建设项目(No.Y0102andBB67) 上海大学创新基金资助项目
关键词 并联机器人 BP神经网络 定位误差 误差补偿 parallel robot BP neural network positioning error error compensation
  • 相关文献

参考文献10

  • 1VARZIRI M S, NOTASH L. Kinematic calibration of a wire-actuated parallel robot[J]. Mechanism and Machine Theory,2007,42(8) :960-976.
  • 2RENAUD P, VIVAS A, ANDREFF N, et al.. Kinematic and dynamic identification of parallel mechanisms[J]. Control Engineering Practice ,2006, 14(9) : 1099-1109.
  • 3RENAUD P, ANDREFF N, GOGU G, etal.. Optimal pose selection for vision-based kinematic calibration of parallel mechanisms[C]. International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, IROS 2003: 2223-2228.
  • 4BESNARD S, KHALIL W. Identifiable parameters for parallel robots kinematic calibration[C]. Proc. of ICRA, Seoul, Korea, 2001:2859-2866.
  • 5王振华,陈立国,孙立宁.集成式6自由度微动并联机器人系统[J].光学精密工程,2007,15(9):1391-1397. 被引量:8
  • 6YU D Y, CONG D C, HAN J W. Parallel robots pose accuracy compensation using artificial neural networks[C]. ICMLC, Guangzhou, China, 2005: 3194-3198.
  • 7ZHANG D B, HU D W, SHEN L C, etal.. Design of an artificial bionic neural network to control fish-robofs locomotion[J]. Neurocomputing, 2008,71 (4):648- 654.
  • 8魏强,张玉林,于欣蕾,郝慧娟,卢文娟.扫描隧道显微镜微位移工作台的神经网络PID控制方法研究[J].光学精密工程,2006,14(3):422-427. 被引量:10
  • 9FREEMAN J A, SKAPURA D M. Neural network :Algorithms, Applications and Programming Techniques [M]. Addison-Wesley Publishing Company, 1992.
  • 10HUNG M S, HUM Y, SHANKER M S, etal.. Estimating posterior probabilities in classification problems with neural networks[J]. Computational Intelligence and Organizations, 1996, 1(1) : 49- 60.

二级参考文献17

共引文献16

同被引文献231

引证文献29

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部