期刊文献+

迭代动力缩聚法的收敛性分析 被引量:3

Convergence Analysis of Iterative Dynamic Condensation Methods
下载PDF
导出
摘要 利用Lyapunov矩阵方程和Riccati矩阵方程解的理论,对迭代动力缩聚法的收敛性进行了分析证明,并给出了迭代收敛的充分条件。揭示了动力缩聚法与经典的子空间迭代法的内在关系,阐明了各自的优缺点。迭代动力缩聚法实质上是子空间迭代法的变形,它需要人为选择主辅自由度,而子空间迭代法需要人为选定初始迭代向量。从理论上讲,只有主辅自由度选择满足收敛的充分条件要求,才能保证迭代结果收敛到理论上的精确解。给出了一个数值算例,对几种算法进行了对比,并验证了本文的论点。 Based on the theory of solution to the Lyapunov and Riccati matrix equations,in this paper an in-depth analysis of the convergence of iterative dynamic condensation methods is provided and the sufficient conditions for their convergence are introduced.The relationship between the iterative dynamic condensation methods and the classical subspace iterative method is uncovered.In fact,the iterative dynamic condensation methods are a transformed kind of the subspace iterative method.One must select the master and slave degrees of freedom in the iterative dynamic condensation algorithms or the initial iterative vectors in the subspace iterative algrithm.Theoretically,if the selection of the master and slave degrees of freedom meet the demand of the sufficient conditions,the iterative dynamic condensation algorithms will obtain an accurate result.A numerical example is presented in the end of the paper.The results by the various algorithms are compared,and the idea of the paper is verified.
出处 《航空学报》 EI CAS CSCD 北大核心 2008年第3期645-650,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(10672078) 航空支撑科技基金(05D52009) 国家“863”计划(2006AA706103)
关键词 动力缩聚 迭代法 矩阵方程 有限元法 建模 dynamic condensation iterative method matrix equation finite element method modeling
  • 相关文献

参考文献14

  • 1Guyan R J. Reduction of stiffness and mass matrices[J]. American Institute of Aeronautics and Astronautics Journal, 1965,3(2) :380.
  • 2Irons B M. Structural eigenvalue problems elimination of unwanted variables[J]. American Institute of Aeronautics and Astronautics Journal, 1965, 3(5): 961-962.
  • 3O'Callahan J. A procedure for an improved reduced system (IRS) model[C] // Proceedings of 7th International Modal Analysis Conference. 1989: 17-21.
  • 4Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey[J]. Journal of Sound and Vibration,1993,167 (2) : 347-375.
  • 5Friswell M I, Garvey S D, Penny J E T. Model reduction using dynamic and iterated IRS techniques[J]. Journal of Sound and Vibration, 1995,186(2) :311-323.
  • 6Friswell M I, Garvey S D, Penny J E T. The convergence of the iterated IRS method[J]. Journal of Sound and Vibration, 1998,211(1) : 123-132.
  • 7Xia Y, Lin R M. Improved on the iterated IRS method for structural eigensolutions[J]. Journal of Sound and Vibration,2004,270(4/5) :713-727.
  • 8Qu Z Q, Fu Z F. An iterative method for dynamic condensation of structural matrices[J]. Mechanical Systems and Signal Processing, 2000,14 (4) : 667-678.
  • 9吴斌,禹建功,潘英.一种新的结构矩阵缩聚迭代法[J].北京工业大学学报,2006,32(6):481-484. 被引量:1
  • 10Brandts J. The Riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action[J]. Linear Algebra and its Applications, 2003,358 (1): 335- 365.

二级参考文献12

  • 1瞿祖清.[D].上海交通大学,1998.
  • 2薛定宇.反馈控制系统分析与设计[M].北京:清华大学出版社,2000..
  • 3王勖成 邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2000..
  • 4于长官.现代控制理论[M].哈尔滨工业大学出版社,1998..
  • 5GUYAN R J.Reduction of stiffness and mass matrices[J].AIAA Journal,1965,3(2):380.
  • 6SUAREZ L E,SINGH M P.Dynamic condensation method for structural eigenvalue analysis[J].AIAA Journal,1992,30(4):1046-1054.
  • 7QU Zu-qing,FU Zhi-fang.An iterative method for dynamic condensation of structural matrices[J].Mechanical Systems and Signal Processing,2000,14(4),667-678.
  • 8瞿祖清,华宏星,傅志方.一种有限元模型坐标动力缩聚技术[J].振动与冲击,1998,17(3):15-18. 被引量:3
  • 9瞿祖清,傅志方.一种高精度动力缩聚法[J].机械强度,1998,20(3):230-231. 被引量:13
  • 10刘天雄,石银明,华宏星,陈兆能,史习智.主动约束层阻尼板的振动控制研究[J].机械强度,2002,24(1):23-28. 被引量:9

共引文献6

同被引文献15

  • 1宫玉才,周洪伟,陈璞,袁明武.快速子空间迭代法、迭代Ritz向量法与迭代Lanczos法的比较[J].振动工程学报,2005,18(2):227-232. 被引量:32
  • 2Guyan R J. Reduction of stiffness and mass matrices [J]. AIAA Journal, 1965,3(2) .- 380.
  • 3FrisweU M I, Garvey S D, Penny J E T. The conver- gence of the iterated IRS method[J]. Journal of Sound and Vibration, 1998,211 ( 1 ) : 123-132.
  • 4Zhang D W, Li S. Succession-level approximate reduction(SAR) technique for structural dynamic model [C]. Proceedings of the 13th International Modal A- nalysis Conference. Bethel: Society for Experimental Mechanics, 1995 : 435-441.
  • 5Ki Ook Kim, MYUNG Ku Kang. Convergence accel- eration of iterative modal reduction methods [J ]. AIAA Journal ,2001,39(1) : 134-140.
  • 6Qu Z Q, Fu Z F. An iterative method for dynamic condensation of structural matrices[J].Mezhanical Systems and Signal Processing, 2000, 14 (4): 667- 678.
  • 7Qian Y, Dhatt G. An accelerated subspace method for generalized eigenproblems[J].Computers and Structures, 1995,54(6) : 1127-1134.
  • 8Bathe K J, Ramaswamy S. An accelerated subspaee iteration method[J]. Computer Methods in Applied Mechanics and Engineering, 1980,23(3):313-331.
  • 9Wilson E L, Itoh T. An eigensolution strategy for large systems[J]. Computers and Structures ,1983,16 (1-4) : 259-265.
  • 10QIAN Cheng-zhao, PU Chen, WEN Bo-peng, et al. Accelerated subspace iteration with aggressive shift [J]. Computers and Structures, 2007, 85 (19-20):1562-1578.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部