摘要
提出一种基于最小二乘支持向量机(LS-SVM)的径流预测方法。采用线性函数、多项式函数和径向基函数3种核函数进行机器学习,经过反复计算和对比分析,建立了精度较高的径流预测模型。预测实例表明,LS-SVM模型预测的平均相对误差比支持向量机(SVM)减少了2.4%,预测合格率为100%。LS-SVM建模速度快,适用于小样本情况并能得到全局最优解,将其用于径流预测是可行的。
A runoff forecast method is recommended based on least squares support vector machines (LS-SVM). Three kinds of kernel functions(linear function, poly function and radial basis function) are used in machine learning. With continued calculations and comparative analyses, a runoff forecast model with high precision is established. The practical forecasting results show that the mean percentage error of LS-SVM model decreases by 2.4% compared with SVM model and the eligibility rate is 100%. The speed of LS -SVM model is high, it can be used in limited samples to acquire the optimal solution. The proposed model for runoff forecast is feasible.
出处
《中国农村水利水电》
北大核心
2008年第5期8-10,14,共4页
China Rural Water and Hydropower
基金
国家自然科学基金项目(50539140)
国家自然科学基金项目(50679098)
关键词
水利管理
径流预测
最小二乘支持向量机
核函数
hydraulic management
runoff forecast
least squares support vector machine
kernel function