期刊文献+

基于证据推理的可靠度近似计算方法 被引量:4

Evidence Theory-based Method and Algorithm for Calculation of Reliability
下载PDF
导出
摘要 提出了一种基于证据推理的可靠度近似计算方法。定义结构失效的命题为F,通过证据推理求出F的信度Bel(F)和似真度pl(F),Bel(F)和pl(F)的均值可作为失效概率的近似值。研究了该方法的数值计算方法,给出了具体的计算步骤,并分析了影响计算精度与计算效率的关键因素。研究表明:随机变量分布区间的等分数k越大则失效概率的计算精度越高;而随机变量个数n和k越大,计算效率则越低。开发了用该方法计算可靠度的专用程序,并通过应用实例验证了该方法的正确性和有效性。 A method of approximate reliability calculation was introduced based on evidence reasoning. F was defined as an event of structure failure. The belief measure of F (Bel(F)) and the plausibility measure of F (pl(F)) were calculated using evidence theory. [Bel(F), pl(F) ] was used as the interval estimation of failure probability. The distributing domains of n random variables in performance function of engineering structure were respectively split into k intervals. The average of Bel( F ) and pl (F) could be considered as the approximate estimation of failure probability. A numerical algorithm for realizing the introduced method was investigated and its calculation steps were presented, The key influencing factors on the evaluation precision and calculation efficiency were illuminated subsequently. The greater the k is, the more precise the calculated failure probability is, and the calculation efficiency decreases with the increasing of k and n. Finally, a program for realizing this algorithm was developed and two examples were presented to demonstrate the validity of the introduced method.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2008年第5期128-132,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 湖南省教育厅高等学校科学研究重点资助项目(项目编号:03A031)
关键词 可靠度 失效概率 计算方法 证据理论 Reliability, Failure probability, Numerical algorithm, Evidence theory
  • 相关文献

参考文献8

二级参考文献25

  • 1王玲玲.指数分布下可靠性Bayes验证[J].华东师范大学学报(自然科学版),1993(3):1-10. 被引量:7
  • 2冷伍明,赵善锐.用不求导数的最优化计算可靠度指标[J].西南交通大学学报,1993,28(3):58-63. 被引量:12
  • 3章光,朱维申,白世伟.计算近似失效概率的最大熵密度函数法[J].岩石力学与工程学报,1995,14(2):119-129. 被引量:24
  • 4[2]Madsen H O, Krenk S, Lind N C. Methods of Stru-ctural Safety[M]. New Jersey: Prentice-Hall, Inc., Englewood Cliffs,1986.
  • 5[5]Pei-Ling Liu, Kiureghian A D. Optimization algori-thms for structural reliability[J]. Structural Safety, 1991,9(3):161-177.
  • 6[6]Val D, Bljuger F and Yankelevsky D. Optimization problem solution in reliability analysis of reinforced concrete structures[J]. Computers and Structures, 1996,60(3):351-355.
  • 7Grandhi R V,Comput Method Appl Mech Eng,1999年,168卷,185页
  • 8Grandhi R V,Proceedings of WCSMO 3 Buffalo NY,1999年
  • 9Wang L P,Struct Optim,1995年,10卷,1期,2页
  • 10Wang L P,Computers Structures,1994年,52卷,1期,103页

共引文献72

同被引文献39

  • 1张利平,张秀敏.插装式溢流阀调压弹簧的模糊优化[J].现代机械,1993(2):24-27. 被引量:3
  • 2GB/T786.1-93,液压气动图形符号[S].
  • 3Shafer G.A mathematical theory of evidence[M].Princeton:Princeton University Press,1976.
  • 4邱宣怀.机械设计(第三版)[M].北京:高等教育出版社,1998.
  • 5Smets P. Imperfect information : imprecision-uncertainty [ A ]. Uncertainty Management in Information Systems From Needs to Solutions [ C ] , Netherlands: Kluwer Academic Pub-lishers, 1997.
  • 6Agarwal H, et al. Uncertainty quantification using evidence theo- ry in multidisciplinary design optimization[ J]. Reliability Engi- neering and System Safety, 2004,85 ( 1-3 ) :281 - 294.
  • 7Sharer G. A Mathemalical Theory of Evidence[ M]. Prince- ton : Princeton University Press, 1976.
  • 8Zadeh L A. Fuzzy sets as a basis for a theory of possibility [ J ]. Fuzzy Sets and Systems, 1978,1 ( 1 ) : 3 - 28.
  • 9Smets P. Papers on belief functions and uncertainty by SMETS P and co-authors[EB/OL]. (2005-3-31) [2008-11-30]. http:// iridia. ulb. ae. be/- psmets/AABPapers. html.
  • 10Oberkampf W L, et al. Challenge problem : Uncertainty in system response given uncertain parameters [ J ]. Reliability Engineer- ing & System Safety, 2004,85 (1-3) :11 - 19.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部