期刊文献+

改进的粒子群优化算法 被引量:8

AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM
下载PDF
导出
摘要 将基本粒子群算法粒子行为基于个体极值点和全局极值点变化为基于个体极值中心,并且按一定概率选择其他粒子的个体极值点,设计了一种新的粒子群优化算法。新算法的学习行为符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解。实验结果表明了算法的有效性。 A new particle swarm optimization algorithm was presented in the paper by altering particle behaviour from individual extremum point and global extrema points based to individual extremum centre based in fundamental particle swarm algorithm and by selecting the indi- vidual extremum point of other particles in a certain probability. The learning behaviour of the new algorithm accords with the learning law of natural living beings and is beneficial to global optimal solution for particle discovery problems. The testing results also showed the validity of the algorithm.
机构地区 西北大学数学系
出处 《计算机应用与软件》 CSCD 北大核心 2008年第5期85-86,111,共3页 Computer Applications and Software
基金 陕西省教育厅专项基金资助项目(05JK303)。
关键词 粒子群优化算法 群智能 进化计算 Particle swarm optimization algorithm Swarm intelligence Evolutionary computation
  • 相关文献

参考文献8

  • 1Eberhart R, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [ C ]. Proc. of the Congress on Evolutionary Computation ,2000:84 - 88.
  • 2Shi Y, Eberhart R C. A modified Particle Swarm Optimizer [C]. Anchorage , Alaska:IEEE International Conference on Evolutionary Computation, 1998 (5) :69 - 73.
  • 3Zheng YongLing, Ma LongHua, Zhang LiYan, Qian JiXin. On the convergence analysis and parameter selection in particle swarm optimization, Machine Learning and Cybernetics[J]. International Conference, 2003,3 : 1802 - 1807.
  • 4Xie Xiaofeng , Zhang Wenjun, Yang Zhilian. A dissipative Particle Swarm Optimization, Congress on Evolutionary Computation ( CEC ), Hawaii, USA ,2002 : 1456 - 1461
  • 5李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:303
  • 6王存睿,段晓东,刘向东,周福才.改进的基本粒子群优化算法[J].计算机工程,2004,30(21):35-37. 被引量:43
  • 7杨燕,靳蕃,Kamel M.微粒群优化算法研究现状及其进展[J].计算机工程,2004,30(21):3-4. 被引量:23
  • 8王翠茹,张江维,王玥,衡军山.改进粒子群优化算法求解旅行商问题[J].华北电力大学学报(自然科学版),2005,32(6):47-51. 被引量:23

二级参考文献29

  • 1袁和金,王翠茹.粒子群优化算法在求解平面选址问题中的应用研究[J].华北电力大学学报(自然科学版),2004,31(4):93-97. 被引量:12
  • 2[1]Kennedy j, Eberhart R C, Shi Y. Swarm Intelligence. San Francisco:Morgan Kaufnann Publishers, 2001
  • 3[2]Kennedy J, Eberhart R C. Particle Swarm Optimization. Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995:1942-1948
  • 4[5]Shi Y, Eberhart R C. A Modified Particle Swarm Optimization. Proc.IEEE International Conference on Evolutionary Computation,Anchorage, 1998:69-73
  • 5[6]Clerc M, Kennedy J. The Particle Swarm Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans. on Evolutionary Computation, 2002, 6(1): 58
  • 6[7]Shi Y, Eberhart R C. Parameter Selection in Particle Swarm Optimization. Evolutionary Programming Ⅶ, Lecture Notes in Computer Science 1447, Springer, 1998,591-600
  • 7[8]Kennedy J. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance. Proc. of the IEEE Congress of Evolutionary Computation, 1999,3: 1938
  • 8[9]Suganthan P N. Particle Swarm Optimiser with Neighborhood Operator. Proc. of the IEEE Congress off Evolutionary Computation, 1999,3:1958
  • 9[10]Eberhart R C, Shi Y. Comparison Between Genetic Algorithms and Particle Swarm Optimization. Evolutionary Programming Ⅶ, Lecture Notes in Computer Science 1447, Springer, 1998,611-616
  • 10[11]Hu X, Eberhart R C, Shi Y. Engineering Optimization With Particle Swarm. IEEE Swarm Intelligence Symposium, Indianapolis, USA,2003:53-57

共引文献383

同被引文献65

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部