期刊文献+

一种基于邻域的多目标进化算法 被引量:5

Multi-objective evolutionary algorithm based on neighborhood
下载PDF
导出
摘要 种群维护是多目标进化算法的重要组成部分。针对维护方法和运行效率的矛盾,提出一种基于邻域的多目标进化算法(NMOEA)。定义了一个反映个体之间邻近程度的指标———邻域包含关系,利用此关系对个体进行分布适应度分级的赋值,并用动态方法快速地对种群进行维护。通过7个测试问题和3个方面的测试标准,结果表明新算法在较快速地接近真实的最优面的同时,拥有良好的分布性。 Population maintenance is an important issue in multi-objective evolutionary algorithms. For the deficiency that the maintenance methods of good distribution usually have a high time complexity, a multi-objective evolutionary algorithm based on neighborhood (named NMOEA) was proposed. This measure defined a criterion-neighborhood containing relation, which represented the close degree of individuals. And it was used to assign diversity fitness in a dynamic method that maintained the population rapidly. By examining three performance metrics on seven test problems, the new algorithm can approach the true Pareto front fast, and has good distribution.
出处 《计算机应用》 CSCD 北大核心 2008年第6期1570-1574,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60773047) 国家863计划项目(2001AA114060) 留学回国人员科研启动基金资助项目(教外司留[2005]546号) 湖南省自科基金资助项目(05JJ30125) 湖南省教育厅重点科研资助项目(06A074)
关键词 多目标进化算法 多目标优化问题 种群维护 分布适应度 邻域 multi-objective evolutionary algorithm multi-objective optimization problem population maintenance diversity rank neighborhood
  • 相关文献

参考文献18

  • 1DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[ J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182 - 197.
  • 2ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm, TIK-Report 103 [R]. 2001.
  • 3曾三友,李晖,丁立新,姚书振,许中华.基于排序的非劣集合快速求解算法[J].计算机研究与发展,2004,41(9):1565-1571. 被引量:8
  • 4郑金华,史忠植,谢勇.基于聚类的快速多目标遗传算法[J].计算机研究与发展,2004,41(7):1081-1087. 被引量:14
  • 5郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 6石川,李清勇,史忠植.一种快速的基于占优树的多目标进化算法[J].软件学报,2007,18(3):505-516. 被引量:14
  • 7LAUMANNS M, THIELE L, DEB K, et al. Combining convergence and diversity in evolutionary multiobjective optimization [ J]. Evolutionary computation, 2002, 10(3): 263-282.
  • 8HORN J, NAFPLIOTIS N, GOLDBERG D E. A niched pareto genetic algorithm for multiobjective optimization [ C]//Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. Piscataway, New Jersey: IEEE Service Center, 1994, 1:82-87.
  • 9CORNED W, KNOWLES J D, OATES M J. The pareto envelopebased selection algorithm for multiobjective optimization [ C ] / /Proceedings of the Parallel Problem Solving from Nature VI Conference. Berlin: Springer-Verlag, 2000:839-848.
  • 10DEB K, MOHAN M, MISHRA S. A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions, Kan-GAL Report No. 2003002 [R]. 2003.

二级参考文献52

  • 1崔逊学,林闯.一种基于偏好的多目标调和遗传算法(英文)[J].软件学报,2005,16(5):761-770. 被引量:23
  • 2曾三友,魏巍,康立山,姚书振.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162. 被引量:36
  • 3雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 4姚新,徐永.Recent Advances in Evolutionary Computation[J].Journal of Computer Science & Technology,2006,21(1):1-18. 被引量:30
  • 5J L Cohon. Multiobjective Programming and Planning. New York: Academic Press, 1978
  • 6R E Steuer. Multiple Criteria Optimization: Theory, Computation, and Application. New York: Wiley, 1986
  • 7J Koski. Multicriterion optimization in structural design. In: E Atrek, R H Gallagher, K M Ragsdell, et al eds. New Directions in Optimum Structural Design. New York: Wiley, 1984. 483~503
  • 8J D Schaffer. Multiple objective optimization with vector evaluated genetic algorithms: [Ph D dissertation]. Nashville, Tennessee, U S: Vanderbilt University, 1984
  • 9J D Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. The Int'l Conf on Genetic Algorithms and Their Applications, Pittsburgh, 1985
  • 10P Hajela, C Y Lin. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992, 5(4): 99~107

共引文献81

同被引文献35

  • 1李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:54
  • 2石川,李清勇,史忠植.一种快速的基于占优树的多目标进化算法[J].软件学报,2007,18(3):505-516. 被引量:14
  • 3刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121. 被引量:21
  • 4郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 5ELMUSRATI M,EL-SALLABI H,KOIVO H.Applications of multi-objective optimization techniques in radio resource scheduling of cellular communication systems[J].IEEE Transactions on Wireless Communications,2008,7(1):343-353.
  • 6DASHENG L,TAN K C,GOH C K.A particle swarm algorithm for multiobjective design optimization[J].IEEE Transactions on Systems Man and Cybernetics,2007,37(1):42-50.
  • 7HO S L,YANG S Y,ZHANG G.A particle swarm optimizationbased method for multi-objective design optimizations[J].IEEE Transactions on Magnetics,2005,41(5):1756-1759.
  • 8VALENZUELA C L.A simple evolutionary algorithm for multi-objective optimization (SEAMO)[C]//CEC' 02:Proceedings of the 2002 Congress on Evolutionary Computation.Honolulu:IEEE,2002:717-722.
  • 9DEB K,MOHAN M,MISHRA S.Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solution[J].Evolutionary Computation,2005,13(4):501-525.
  • 10LAUMANNS M,THIELE L,DEB K,et al.Combining convergence and diversity in evolutionary multiobjective optimization[J].Evolutionary Computation,2002,10(3):263-282.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部