期刊文献+

Red Long Lasting Phosphorescence of Mn^(2+) Doped Zinc Phosphate Glasses

Red Long Lasting Phosphorescence of Mn^(2+) Doped Zinc Phosphate Glasses
下载PDF
导出
摘要 Mn^2+ doped ZnO-P2O5 glasses emit red fluorescence, which shows that Mn^2+ ion doped in zinc phosphate glass is octahedrally coordinated. Moreover, glass samples exhibit bright red long lasting phosphorescence (LLP) when the mole percent of ZnO are more than 60%. After turnoff the irradiation source of UV lamp peaking at 254 nm, the red phosphorescence can be observed for about 6 h in the limit of light perception for naked eyes (0.32 mcd/m^2). Photoluminescence (PL) spectra, LLP emission spectra and decay curves were detected. Increasing MnO or ZnO content, the phosphorescence intensity can be improved distinctly and the emission wavelength can be also adjusted from 595 nm to 628 nm. According to the structural characteristic of zinc phosphates glasses, we suggest that non-bridge oxygen (NBO) is probably related with the arising of LLE Meantime, the variation of crystal field intensity induced that the LLP emission wavelength red shifts. Mn^2+ doped ZnO-P2O5 glasses emit red fluorescence, which shows that Mn^2+ ion doped in zinc phosphate glass is octahedrally coordinated. Moreover, glass samples exhibit bright red long lasting phosphorescence (LLP) when the mole percent of ZnO are more than 60%. After turnoff the irradiation source of UV lamp peaking at 254 nm, the red phosphorescence can be observed for about 6 h in the limit of light perception for naked eyes (0.32 mcd/m^2). Photoluminescence (PL) spectra, LLP emission spectra and decay curves were detected. Increasing MnO or ZnO content, the phosphorescence intensity can be improved distinctly and the emission wavelength can be also adjusted from 595 nm to 628 nm. According to the structural characteristic of zinc phosphates glasses, we suggest that non-bridge oxygen (NBO) is probably related with the arising of LLE Meantime, the variation of crystal field intensity induced that the LLP emission wavelength red shifts.
作者 廉志红 苏锵
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第B12期799-802,共4页 武汉理工大学学报(材料科学英文版)
基金 Funded by the State Key Project of Basic Research of China(No.GB1998061312)
关键词 red long lasting phosphorescence zinc phosphate glass Mn^2+ red long lasting phosphorescence zinc phosphate glass Mn^2+
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部