期刊文献+

奇型微分算子幂的Friedrichs扩张

The Friedrichs Extension of Powers of Singular Differential Operators
下载PDF
导出
摘要 将一个偶数阶对称微分方程转化为Hamiltonian系统,在区间[a,+∞)上,证明了2n阶奇型拟微分算子幂的最小算子的Friedrichs扩张存在的边条件形式,即由2n阶对称系统的2n×2n阶基解矩阵的2n×n阶主解子矩阵给出的边条件形式. In this paper, we transformat from the 2n-th order equation to a Hamiltonian system and prove that the Friedrichs extension of powers of the minimal operator for 2n-th order singular ordinary differential operators is determined in terms of boundary conditions by the principal 2n×n solution submatrix of a fundamental 2n × 2n matrix of the system representation of the scalar 2n-th order equation in [α, +∞).
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2008年第3期314-317,320,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10661008) 内蒙古自然科学基金资助项目(200711020102)
关键词 实对称微分算子 幂算子 Friedrichs扩张 HAMILTONIAN系统 the symmetric differential operators powers of differential operators the Friedrichsextension Hamltonian system
  • 相关文献

参考文献6

  • 1Kato D. Perturbation Theory for Linear Operators [M]. 2th ed. New York:Spring-Verlay, 1980:325,352.
  • 2Wei Guangsheng,Xu Zongben,Sun Jun. Seif-adjoint domains of products of differential expressions [J]. Journal of Defferential Equation, 2001,174 : 75-90.
  • 3Reid W T. Sturmian Theory for Ordinary Differential Equations [M]. New York:Springer-Verlay, 1980.
  • 4Marietta M,Zettle A. The Friedrichs extension of singular differential operators [J]. Journal of Differential Equation, 2000,160:404-421.
  • 5Moller M, Zettle A. Semi-boundedness of ordinary differential operators [J]. J Differential Equation, 1995,115 : 24-29.
  • 6曹之江.常微分算子[M].上海:上海科技出版社,1986..

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部