期刊文献+

一类飞蝇——天敌生态系统的概周期解

Almost periodic solution of a class fly——natural enemy ecosystem
下载PDF
导出
摘要 研究了一类飞蝇——天敌两种群动力学模型,该生态系统是一飞蝇种群被一天敌种群捕食.讨论了该生态系统的正不变集存在性及其解的有界性;进一步采用构造Liapunov泛函的方法和概周期解存在唯一性定理,证明了该生态系统正概周期解的存在唯一性. The dynamics model of the two species, fly and its natural enemy, is studied in this paper. This is an ecosystem in which a fly species is preyed on by its natural enemy species. Existence of positive invariable set and boundedness of solution of the ecosystem are discussed. The existence and uniqueness of the ecosystem's positive almost periodic solution are further proved by Liapunov Functional and the theorem of the existence and uniqueness of almost periodic solution.
作者 赵明 程荣福
出处 《吉林化工学院学报》 CAS 2008年第2期77-79,共3页 Journal of Jilin Institute of Chemical Technology
关键词 概周期解 生态系统 LIAPUNOV泛函 存在唯一性 almost periodic solution ecosystem Liapunov functional existence and uniqueness
  • 相关文献

参考文献8

二级参考文献22

  • 1[1]Zhang B G,Gopalsamy K.Global attractivity in the delay logistic equation with variable parameters[J].Math.Proc.Cambridge Philos.Soc.,1990,107:579~590.
  • 2[2]Clark C W.Mathematical Bioeconomics:The Optimal Management of Renewable Resources,2nd ed.[M].New York:Wiley-interscience Publication,1990.
  • 3[3]Weng Peixuan,Liang Miaolian.Existence and global attractivity of periodic solution of a model in population dynamics[J].Acta Math.Appl.Sinica,1996,4:427~433.
  • 4[4]Zhang B G,Gopalsamy K.Global attractivity and oscillations in a periodic delay logistic equation[J].J.Math.Anal.Appl.,1990,150:274~283.
  • 5[5]Lenhart S M and Travis C C.Global stability of a biological model[J].Proc.Amer.Math.Soc.,1986,96:75~78.
  • 6[6]Gopalsamy K and Weng Peixuan.Feedback regulation of logistic growth[J].Internat.J.Math.& Math.Sci.,1993,1:177~192.
  • 7[7]Coleman B D.Nonautonomous logistic equations as models of the adjustment of populations to environmental changs[J].Math.Biosci.,1979,45:159~173.
  • 8[8]Coleman B D,Hsieh Y H,Knowles G P.On the optimal choice of r for a population in a periodic enviroment[J].Math.Biosci.,1979,46:71~85.
  • 9[9]Gopalsamy K.Stability and oscillations in delay differential equations of population dynamics,Kluwmer Acad.,Dordrecht,1992.
  • 10[10]Gopalsamy K,He X Z.Dynamics of an almost periodic logistic integro-differential equation[J].Methods Appl.Anal.,1995,2:38~66.

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部