期刊文献+

蚁群算法求解函数优化中的参数设置 被引量:4

Ant colony algorithm design for function optimization
下载PDF
导出
摘要 蚁群算法的参数设置一直是依靠经验和实验来确定,造成实验工作量大且难以得到最优的参数组合,影响了算法的使用。从基本蚂蚁算法出发,结合实验结果,讨论了α、β及ρ的变化对实验结果的影响,提出了相应的参数改进方案。并将经此方案修正的蚂蚁算法与基本蚂蚁算法同时运用于经典函数优化问题中,对仿真结果进行了对比。 The enactment of the parameters of an ant system is determined by experience and experiment.This leads to heavy work load and makes the optimal combination of the parameters difficult to obtain.On the basis of the ant algorithm and the re sult of the experiment,the effect by changing the parameters of α、β、ρ is discussed,and an improved scheme is proposed.Then both of the improved scheme and the ant algorithm are applied to the function optimization problem,and a comparison is made in the simulation.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第17期53-55,共3页 Computer Engineering and Applications
基金 甘肃省自然科学基金(the Natural Science Foundation of Gansu Province of China under Grant No.3ZS024- B25- 034)
关键词 蚁群算法 函数优化 组合优化 参数设置 ant colony algorithm function optimization combinatorial optimization optimum configurations
  • 相关文献

参考文献9

  • 1Dorigo M,Gambardella,Maria L.Ant colonies for the traveling salesman problem[J].Biosystems, 1997,43 (2) : 73-81.
  • 2Dorigo M,Gambardella,Maria L.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary, 1997, 1 (1) : 53-66.
  • 3Seuranen E.Solving traveling salesman problem with genetic Algorithms[EB/OL]. ( 2003 -02-28 ).http ://www,hut.fi/-eseurance/projects/ TSP/.
  • 4Dorigo M,Luca.M.A study of some properties of ant Q[C]//Voigt H M,Ebeling W,Rechenherg I.Proc of 4th Int Conf on Panelled Problem Solving from Nmure(PPSN).Berlin:Springer Verlag, 1996:656-665.
  • 5杜呈欣,陈小强,熊伟清.用于求解函数优化的蚁群算法设计[J].计算机工程与应用,2007,43(25):57-59. 被引量:5
  • 6米凯利维茨Z.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 7Stutzle T,Hoos H.The MAX-MIN ant system and local search for the traveling salesman problem[C]//.Baeck T, Michalewiez Z, Yao X. Proceedings of IEEE-ICEC-EPS'1997,IEEE International Conference on Evolutionary Computation and Evolutionary Programming Conference,IEEE Press, 1997: 309-314.
  • 8丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356. 被引量:287
  • 9林振荣.一种基因与蚁群的融合算法研究[J].微计算机信息,2007,23(36):176-177. 被引量:3

二级参考文献19

  • 1叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:155
  • 2米凯利维茨.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000..
  • 3高曙,郑德.一种基于蚁群算法的任务调度方法[J].微计算机信息,2007,23(02X):191-192. 被引量:4
  • 4Marco Dorigo, Gambardella, Luca Maria. Ant colonies for the traveling salesman problem. Biosystems, 1997, 43(2): 73~81.
  • 5Marco Dorigo, Gambardelh, Luca Maria. Ant colony system: A cooperative learning approach to the traveling salesaum problem. IEEE Trans on Evolutionary Computation, 1997, 1(1) : 53~66.
  • 6Marco Dorigo, Eric Bonabeau, Theranlaz Guy. Ant algorithms and stigmergy. Future Generation Computer System, 2000, 16(8) : 851~871.
  • 7Thomas Stutzle, Holger H Hoos et al. MAX-MIN ant system. Future Generation Computer System, 2000, 16(8) : 889~914.
  • 8Marcus Randall, Andrew Lewis. A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing, 2002, 62(9): 1421~1432.
  • 9Dorigo M,Gambardella,Maria L.Ant colonies for the traveling salesman problem[J].Biosystems,1997,43(2):73-81.
  • 10Dorigo M,Gambardella,Maria L.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary,1997,1(1):53-66.

共引文献296

同被引文献47

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部