摘要
无网格法中的近似函数大都不是插值函数,在处理本质边界条件时较为困难。通过楔形基函数插值理论来构造满足插值要求的近似函数,并通过加权最小二乘法来离散控制方程,在此基础上提出了一种新型的无网格方法——基于楔形基插值函数的加权最小二乘无网格法。该方法是一种基于节点信息的纯无网格法。将该方法应用于弹性静力学问题的求解,得到了满意的结果。
It is difficult to settle essential boundary conditions in meshless method because the meshless approximation functions are not built by interpolation schemes. A new meshless method was presented based on weighted least-square form and ridge basis functions interpolation (WLSR). WLSR is a pure meshless method only based on nodal information. The results of numerical examples applied to elastostatics are satisfying.
出处
《中国石油大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第3期108-113,共6页
Journal of China University of Petroleum(Edition of Natural Science)
关键词
无网格法
楔形基函数
加权最小二乘法
插值形函数
本质边界条件
meshless method
ridge basis function
weighted least-square method
interpolation shape function
essentialboundary condition