期刊文献+

主方向各向异性扩散小波收缩图像降噪算法 被引量:1

The Image Denoising Algorithm of Principal Direction Anisotropic Diffusion Wavelet Shrinkage
下载PDF
导出
摘要 首先证明相干增强扩散算法(CED)与二维Haar小波收缩算法的等价性,推导图像像素点主曲率和主方向的表达式,并以之构造扩散矩阵。根据相干增强扩散与小波收缩的等价性,提出主方向各向异性扩散小波收缩算法。该算法在低频部分采用经典各向异性扩散(PM扩散),高频部分采用主方向各向异性扩散进行小波收缩。实验结果表明,主方向各向异性扩散小波收缩算法充分发挥了各向异性扩散算法良好的局部表现能力和小波收缩算法的快速计算能力,具有更好的降噪性能。 The equivalency of coherence enhancing diffusion (CED) and wavelet shrinkage are improved, the expression of principal curvature and principal direction are induced, and the diffusion matrix is construct by it. Based on the equivalency of CED and wavelet shrinkage, we put forward the principal direction anisotropic diffusion wavelet shrinkage image denoising algorithm. In the algorithm, the classic nonlinear diffusion method (PM) is adopted to process the low frequency part, diffuse the high frequency part using principal direction anisotropic diffusion to shrink the wavelet coefficient. The experimental results show that principal direction anisotropic diffusion wavelet shrinkage algorithm utilize the advantage of high-order anisotropic diffusion and wavelet shrinkage respectively, the denoising ability of it is better.
作者 朱景福
出处 《黑龙江八一农垦大学学报》 2008年第2期75-79,共5页 journal of heilongjiang bayi agricultural university
关键词 图像降噪 各向异性扩散 小波收缩 主方向 image denoising anisotropic diffusion wavelet shrinkage principal direction
  • 相关文献

参考文献11

  • 1Rafael C.,Gonzalez. Digital Image Processing Using MATLAB [ M ].BEIJING:Publishing House of Electronics Industry,2004.
  • 2王正明,谢美华.偏微分方程在图像去噪中的应用[J].应用数学,2005,18(2):219-224. 被引量:17
  • 3Donoho D L. Denosing by soft thresholding [ J ].IEEE Trans Information Theory, 1995,41 (3):613-627.
  • 4Perona P, Malik J.Scale space and edge detection using anisotropic diffusion [J].IEEE Trans Pattern Analysis and Machine Intelligence, 1990,12(7):629-639.
  • 5Weickert J. Coherence Enhancing diffusion filtering [J]. International Journal of Computer Vision,1999, 31 (2/3): 111-127.
  • 6Wei G W. Generalized Perona-Malik equation for image restoration [J].IEEE Signal Processing Letters,1999, 6 (7): 165-167P.
  • 7Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time [J] IEEE Transactions on Image Processing. 2003,12 (12): 1579-1590.
  • 8SteidlG,Weickert J.Relations between Soft Wavelet Shrinkage and Total Variation Denoising [C]//Luc J.Van Gool. Proceedings of the 24th DAGM Symposium on Pattern Recognition. Lecture Notes in Computer Science. London: Springer-Verlag, 2002.198-205.
  • 9Mrazek P, Weickert J. Rotationally invariant wavelet shrinkage [ C ]//B.Michaelis, G. Krell.Pattem Recognition: Lecture Notes in Computer Science. Heidelberg: Springer Berlin,2003.156-163.
  • 10吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法[J].电子学报,2006,34(1):163-166. 被引量:34

二级参考文献19

  • 1Weickert J. A Review of Nonlinear Diffusion Filtering in Scale-space Theory in Computer Vision[M].Berlin: Springer, 1997.
  • 2Perona P,Malik J. Scale-space and edge detection using a nisotropic diffusion[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990,12(7):629-639.
  • 3Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003,12(12) : 1579-1590.
  • 4Gilboa G,Zeevi Y Y,Sochen N A. Forward and backward diffusion processes for adaptive image enhancement denosing[J].IEEE Transaction on Image Processing, 2002,11(7):689-703.
  • 5Gilboa G,Zeevi Y Y, Sochen N A. Complex diffusion process for image filtering[C].Scale-Space, 2001,LNCS 2106, Berlin: Springer-Verlag, 2001.
  • 6Weickert J. Theoretical foundations of naisotropic diffusion in image processing[J]. Computing, 1996,11 :221-236.
  • 7Weickert J. Coherence-Enhancing diffusion filtering[J].International Journal of Computer Vision, 1999,31(2/3) : 111 -127.
  • 8Mrazek P, Navara M. Selection of optimal stopping time for nonlinear diffusion filtering[J]. International Journal of Computer Vision,2003,52(2/3): 189-203.
  • 9Steidl G,Weickert J. Brox T, Mrazek P,Welk M. On the equivalence of soft wavelet shrinkage,total variation diffusion,total variation regularization,and SIDEs[J]. SIAM Journal on Numerical Analysis, 2004,42(2) : 686-713.
  • 10Donoho D L.Denoising by soft thresholding[J].IEEE Trans Information Theory,1995,41(3):613-627.

共引文献48

同被引文献5

  • 1郭晶,孙伟娟.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 2Yang Jingyu, Xu Wenli, l)ai Qionghai. Fast adaptive wavelet packets using interscale embedding of decomposition structures [J]. Pattern Recognition Letters, 2010,31:1481-1486.
  • 3陈东明.一种最优小波包搜寻算法[J].哈工滨工业大学学报,2009,41(1):200-203.
  • 4Volkan Kumbasar,Oguz Kucur. Better wavelet packet tree structures for PAPR reduction in WOFDM systems [J~. Digital Signal Processing, 2008,18:885-891.
  • 5晏力.基于小波变换的数学图像压缩研究[J].四川兵工学报,2010,31(2):136-138.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部