期刊文献+

一种连续U-树抽象状态最佳分裂点选取方法 被引量:1

A Method for Selecting Best Splitting Point of Abstract State in Continuous U-Tree
下载PDF
导出
摘要 经典连续U-树算法使用分布检验来确定抽象状态的最佳分裂点,但选取合适的置信阈值非常困难.提出一种基于最优的最佳分裂点选取方法,该方法将抽象状态的最佳分裂点选取问题转化为一个最优问题,从而规避了置信阈值大小难以确定的问题,并从理论上减少了连续U-树算法的时间复杂度.通过消解协商僵局的学习任务实验验证了它的有效性,表明了算法的性能得到增强. The classical continuous U-tree algorithm employs distribution tests (e. g. Kolmogorov-Smirnov test and information gain ratio test) to determine the best splitting points of abstract states, but it is very difficult to set a confidence threshold properly. A method for selecting the best splitting points of abstract states in continuous U-tree based on optimization is put forward. This method turns the task of selecting the best splitting points into and optimization one. As a result, it avoids the difficulty of setting the appropriate confidence threshold in the classical algorithm and reduces the time complexity of the algorithm in theory. As is shown by the results of experiments upon the complex learning task getting rid of negotiation deadlocks, the method is valid and the performance of the continuous U-tree algorithm utilizing the method is enhanced.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第2期279-284,共6页 Journal of Shanghai Jiaotong University
基金 广东省自然科学基金(06029281)资助项目
关键词 连续U-树 状态抽象 最佳分裂点 协商僵局 continuous U-tree state abstraction best splitting point negotiation deadlock
  • 相关文献

参考文献8

  • 1Sutton R,Barto A G.An introduction to reinforcement learning[M].USA:MIT Press,1998.
  • 2Barto A G,Mahadevan S.Recent advances in hierarchical reinforcement learning[J].Discrete Event Dynamic Systems:Theory and Applications,2003,13(4) 41-77.
  • 3Hengst B.Discovering hierarchy in reinforcement learning[D].Sydney:University of New South Wales,2003.
  • 4McCallum A K.Reinforcement learning with selective perception and hidden state[D].New York:University of Rochester,1995.
  • 5Uther W T B.Tree based hierarchical reinforcement learning[D].Pittsburgh:Carnegie Mellon University,2002.
  • 6Sutton R S,Precup D,Singh S.Between MDPs and semi-MDPs a framework for temporal abstraction in reinforcement learning[J].Artificial Intelligence,1999,112(1):181-211.
  • 7Au M,Maire F.Automatic state construction using decision tree for reinforcement learning agents[C]// Proceedings of International Conference on Intelligent Agents,Web Technologies and Interne:Commerce (CIMCA).Gold Coast,Australia:IEEE Press,2004:212-216.
  • 8彭志平,彭宏,郑启伦.一种双边多议题自治协商模型的研究[J].电子与信息学报,2007,29(3):733-738. 被引量:12

二级参考文献11

  • 1郭庆,陈纯.基于整合效用的多议题协商优化[J].软件学报,2004,15(5):706-711. 被引量:27
  • 2Das R,Hanson J E,and Kephart J O,et al..Agent-human interactions in the continuous double auction[C].Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence,Washington,2001:1169-1176.
  • 3Fatima S S,Wooldridge M,and Jennings N R.An agenda-based framework for multi-issue negotiation.Artificial Intelligence,2004,152(1):1-45.
  • 4Fatima S S,Wooldridge M,and Jennings N R.Optimal agendas for multi-issue negotiation.Proceedings 2nd International Conference on Autonomous Agents and Multi-agent Systems,Melbourne,Australia,2003:129-136.
  • 5Luo Xudong,Jennings N R,and Shadbolt N,et al..A fuzzy constraint based model for bilateral,multi-issue negotiation in semi-competitive environments.Artificial Intelligence,2003,148(1-2):53-102.
  • 6Zeng DJ and Sycara K.Bayesian leaning in negotiation.International Journal of Human-Computer Studies,1998,48(1):125~141.
  • 7Sandholm T W and Zhou Y H.Surplus equivalence of leveled commitment contracts.Artificial Intelligence,2002,142(2):239~264.
  • 8Braynov S and Sandholm T.Contracting with uncertain level of trust.Computational Intelligence,2002,18(4):125~141.
  • 9Jennings N R and Faratin P,et al..Automated negotiation:prospects,method and challenges.International Journal of Group Decision and Negotiation,2001,10(2):199~215.
  • 10Sandholm T W.Negotiation among self-interested computationally limited agents[Ph.d.Thesis].Amherst,MA:University of Massachusetts,1996.

共引文献11

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部