期刊文献+

闪烁噪声下基于模型集合切换的机动目标跟踪算法

Model Set Switching Based Maneuvering Target Tracking Algorithm in the Presence of Glint Noise
下载PDF
导出
摘要 在目标跟踪过程中,由于目标与传感器相对位置的变化以及目标不同部位的反射干扰,传感器测量数据中的测量噪声不再是严格意义上的高斯噪声,而变为具有长拖尾特性的闪烁噪声,而闪烁噪声的出现将严重影响线性卡尔曼滤波器的滤波性能。机动目标跟踪算法应同时考虑目标运动模式变化和闪烁噪声出现对滤波过程的影响。将滤波方程集合划分为包含不同目标运动模式的模型集合,提出了基于模型集合切换的机动目标跟踪(MSSM)算法。仿真结果验证了MSSM算法的有效性。 In tracking maneuvering target, measure noise in sensor measurements becomes glint norse with long tail characteristic instead of Gaussian noise, because of interference from different portion of target and change of relative distance between target and sensor. Filtering accuracy of linear Kalman filter will degrade in the presence of glint noise. Maneuvering target tracking algorithms should estimate target motion mode and eliminate influence of glint noise at the same time. A new maneuvering target tracking (MSSM) algorithm is given, based on model set switching. Simulation results show validity of MSSM al- gorithm.
出处 《传感技术学报》 CAS CSCD 北大核心 2008年第5期806-809,共4页 Chinese Journal of Sensors and Actuators
基金 国防科技重点实验室基金项目资助(51474050105KG0102)
关键词 机动目标 运动模式 多模型 混合估计 闪烁噪声 maneuvering target motion mode multiple model hybrid estimation glint noise
  • 相关文献

参考文献13

  • 1Johnston L A. An Improvement to the Interacting Multiple Model (IMM) Algorithm[J]. IEEE Trans. SP, 2001,49(12): 2893-2908.
  • 2Pitre R R , A Comparative Study of Multiple-Model Algo rithms for Maneuvering Target[J]. Proceedings of SPIE, 2005,5809 : 549-560.
  • 3Bar Shalom Y , IMM Estimator Versus Optimal Estimator for Hybrid Systems[J]. IEEE Trans AES, 2005,41 (3) : 986-991.
  • 4Daeipour E , An Interacting Multiple Model Approach for Target Tracking with Glint Noise[J]. IEEE Trans AES, 1995, 32(2) : 706-715.
  • 5Daeipour E , IMM Tracking of Maneuvering Targets in the Presence of Glint[J]. IEEE Trans AES, 1998, 34(3): 996- 1003.
  • 6左东广,韩崇昭,卞树檀,郑林,朱洪艳.闪烁噪声机动目标跟踪的模型集交互跟踪算法[J].系统仿真学报,2004,16(4):767-771. 被引量:19
  • 7Ackerson G A. On State Estimation in Switching Environments[J]. IEEE Trans on AC, 1970,15( 1 ) : 10-17.
  • 8Tugnait J K , Adaptive Estimation and Identification for Discrete Systems with Markov Jump Parameters[J]. IEEE Trans on AC, 1982,27(5) : 1054-1065.
  • 9Blom H A P. An Efficient Filter for Abruptly Changing Sys tems[C]// Proc 23rd IEEE Conf. Decision and Control, Las Vegas, NV,1984,Dec. 656 658.
  • 10王洁,韩崇昭,李晓榕.多模型估计方法[J].火力与指挥控制,2001,26(4):1-5. 被引量:14

二级参考文献82

  • 1黄泽汉,邢昌凤.基于模糊推理的机动目标自适应多模型跟踪算法[J].情报指挥控制系统与仿真技术,2004,26(5):42-46. 被引量:2
  • 2敬忠良,徐宏,周雪琴,戴冠中.基于神经网络的机动目标信息融合与并行自适应跟踪[J].航空学报,1995,16(6):715-719. 被引量:18
  • 3丁振,潘泉,张洪才,戴冠中.新息滤波交互式多模型噪声辨识算法[J].电子学报,1997,25(5):95-98. 被引量:14
  • 4[2]董志荣.舰艇指控系统的理论基础[M].北京国防工业出版社,1995
  • 5[1]Barton D K.Modern Radar System Analysis [M].Dedham,Ma:Artech House,1988,83-90.
  • 6[2]Skolnik M L.Introduction to radar systems [M].New York:McGraw- Hill,1980.
  • 7[3]Skolnik M L.Radar Handbook [M].New York:McGraw-Hill,1990,18:37-18.45.
  • 8[4]Hewer G A,Martin R D,Zeh J.Robust preprocessing for Kalman filterig of glint noise [J].IEEE Transactions on Aerospace and Electronic Systems,AES-23,1987,1:120-128.
  • 9[5]Masreliez D J,Martin R D.Robust Bayesian estimation for the linear model and robustifying the Kalman filter [J].IEEE Transactions on Automatic Control,1977,AC-22,361-371.
  • 10[6]Masreliez C J.Approximate non-Gaussian filtering with linear state and observation relations [J].IEEE Transactions on Automatic Control,1975,AC-20,107-110.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部