期刊文献+

一种无监督高光谱图像分类算法 被引量:6

An Unsupervised Classification Algorithm for Hyperspectral Imagery
下载PDF
导出
摘要 为了实现对无任何先验知识的高光谱遥感数据的全自动分类,提出了一种关于高光谱图像的无监督分类算法。该算法将高光谱图像的凸面几何特征与光谱特征相结合,通过自动提取端元,并利用所提取的端元进行类别识别来实现高光谱图像的自动分类。此算法的特点是原理简单、易于实现、适应性广,而且不需要任何辅助支持和人工干预。实验结果表明,该算法能够获得较好的分类效果。 In order to classify the data of Hyperspectral remote sensing images automatically without prior knowledge, an unsupervised classification algorithm is presented based on the conception of convex geometry and spectral features in this paper. The endmembers are selected step by step during processing and each endmember can be identified as one class. The advantages of this algorithm are simple in theory, easy to accomplish, widely used, and without any manual assistance. The experiment shows that the classifying result of this algorithm is satisfied.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第6期1123-1127,共5页 Journal of Image and Graphics
基金 航空基金项目(20060853010) 教育部"优秀人才计划"项目(NCET-05-0866)
关键词 高光谱图像 无监督分类 端元 凸面几何原理 hyperspectral image, unsupervised classification, endmember, conception of convex geometry
  • 相关文献

参考文献13

  • 1Jia Xiu-ping, Richards John A. Cluster-space representation for hyperspectral data classification [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40 (3) : 593 - 598.
  • 2Melgani Farid, Bruzzone Lorenzo. Classification of hyperspectral remote sensing images with support vector machines [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 ( 8 ) : 1778- 1790.
  • 3Chang Chein-I. Target signature-constrained mixed pixel classification for hyperspectral imagery[ J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40 ( 5 ) : 1065 - 1081.
  • 4耿修瑞,张霞,陈正超,张兵,郑兰芬,童庆禧.一种基于空间连续性的高光谱图像分类方法[J].红外与毫米波学报,2004,23(4):299-302. 被引量:26
  • 5熊桢,童庆禧,郑兰芬.用于高光谱遥感图象分类的一种高阶神经网络算法[J].中国图象图形学报(A辑),2000,5(3):196-201. 被引量:28
  • 6许卫东.高光谱遥感分类与提取技术[J].红外,2004,25(5):28-34. 被引量:14
  • 7杜培军,方涛,唐宏,陈雍业.高光谱遥感信息中的特征提取与应用研究(英文)[J].光子学报,2005,34(2):293-298. 被引量:38
  • 8Foody G, Cox D. Sub-pixel land cover composition estimation Using a linear mixing model and fuzzy membership functions [ J ]. International Journal of Remote Sensing, 1994, 13 (3) :619 - 631.
  • 9Boardman J W. Automated spectral unmixing of AVIRIS data using convex geometry concepts: in summaries [ A]. In: Proceedings of Fourth Jet Propulsion Laboratory Airborne Geosience Workshop [ C ], Pasadena, CA, USA, 1993, 1:11 -14.
  • 10Winter M E. N-FINDR. An algorithm for fast autonomous spectral end-member determination in hyperspectral data [J]. Proceedings of SPIE, 1999, 3753:266 - 275.

二级参考文献55

  • 1王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:63
  • 2张兵 郑兰芬 等.成象光谱技术应用植被精细光谱分析[J].遥感信息科学开放研究实验室年报,1997,:323-327.
  • 3[2]Carlotto Mark J. Spectral shape classification of landsat thematic mapper imagery[J]. Photogrammetric Engineering & Remote Sensing, 1998, 64(9): 905-913.
  • 4[4]ZHAO Yong-Chao, TONG Qing-Xi, ZHENG Lan-Fen, et al. A Kernel Adaptive Filter(SRSSHF) and Quality; Improvement Method for Hyperspectral Image on the Base of Spectral Dimension Recognition and Spatial Dimension Smoothing According to CSAM[C], SPIE:SPIE 2nd International Symposium on Multispectral Image Processing and Pattern Recognition, 2001, 4552, 230-236
  • 5[5]ZHANG Bing, ZHANG Xia, LIU Liang-Yun, et al. Spectral unmixing and image classification supported by spatial knowledge[C]. Proceedings of SPIE, 2003: 4897: 279-283
  • 6E.Hodgson.""Reducing the computational requirements of the minimum distance classifier "",Remote Sens.Environ.,Vol.25,pp.117-128,1988.
  • 7P.M.Mather.""Computationally-efficient maximum likelihood classifier employing prior probabilities for remotely-sensed data "",Int.J.Remote Sensing,Vol.6,pp.369-376,1985.
  • 8L.Biehl,et al.""A crops and soils data base for scene radiation research "",in Proc.Machine Processing Remotely Sensed Data Symp.,1982,pp.169-177.
  • 9R.A.Schowengerdt.Techniques for Image Processing and Classifications in Remote Sensing.New York:Academic,1983.
  • 10B.Venkateswarlu and P.S.V.S.K.Raju.""Winograd ' s method:A perspective for some pattern recognition problems "",Pattern Recognit.Lett.,Vol.15,pp.105-109,1994.

共引文献103

同被引文献46

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部