期刊文献+

L-Fuzzy Rough Set Based on Complete Residuated Lattice 被引量:1

L-Fuzzy Rough Set Based on Complete Residuated Lattice
下载PDF
导出
摘要 Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems. In this paper, the representation theorems of L-fuzzy rough sets based on residuated lattice are given. The properties and axiomatic definition of the lower and upper approximarion operators in L-fuzzy rough sets are discussed. Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems. In this paper, the representation theorems of L-fuzzy rough sets based on residuated lattice are given. The properties and axiomatic definition of the lower and upper approximarion operators in L-fuzzy rough sets are discussed.
出处 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期95-98,共4页 西南交通大学学报(英文版)
基金 The National Natural Science Foundation of China (No60474022)
关键词 Residuated lattice L-Fuzzy rough set Approximation operator Residuated lattice L-Fuzzy rough set Approximation operator
  • 相关文献

参考文献1

二级参考文献6

  • 1Pawlak Z. Rough sets [ J ]. International Journal of Computer and Information Science, 1982,11 : 341-356.
  • 2Pawlak Z. Rough sets: theoretical aspects of reasonlng about data[ M]. Boston: Kluwer Academic Publishers, 1991 : 06-90.
  • 3Dubois D, Prade H. Rough fuzzy sets and rough fuzzy sets[J]. International Journal of General Systems, 1990,17: 191-209.
  • 4Ktmcheva L I. Fuzzy rough sets: application to feature selection[J]. Fuzzy Sets and Systems, 1992,51 : 47-153.
  • 5Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes[ J]. IEEE Trans Systems Man Cybernet, 1973, 3 : 28-44.
  • 6Qin K Y, Xu Y. An extension form of the extension principle for fuzzy sets[J]. BUSEFAL, 1994,58: 66-71.

共引文献9

同被引文献9

  • 1张小红.基于左连续伪T-模的非可换模糊逻辑系统PUL*[J].数学进展,2007,36(3):295-308. 被引量:7
  • 2PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11 (5) :341-356.
  • 3ZHU William. Relationship between generalized rough sets based on binary relation and coveting [J].Information Sciences, 2009, 179 (3):210-225.
  • 4RADZIKOWSKA M A, KERRE E E. On L-fuzzy rough sets[ C]// Peter J F. Artificial Intelligence and Soft Computing, BerlinHeidelberg: Springer-Verlag, 2004.
  • 5RADZIKOWSKA A M, KERRE E E. Fuzzy Rough sets based on residuated lattices [ C ]// PETERS J F. Transactions on Rough Sets II. BerlinHeidelberg: Springer-Verlag, 2004.
  • 6WU W Z, LEUNG Y, MI J S. On Characterizations of (I, T)-fuzzy Rough approximation operators[J]. Fuzzy Sets and Systems, 2005, 154( 1 ) :76-102.
  • 7ZHANG Xiaohong. Topological residuated lattice: a unifying algebra representation of some Rough set models [ C ]//Rough Sets and Knowledge Technology (RSKT), 2009, Australia: Springer.
  • 8LIU Xuejin, WANG Zhudeng. On very true operators and v-filters[ J]. Wseas Transactions on Mathematics, 2008, 10(7 ) : 133-137.
  • 9王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246. 被引量:369

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部