期刊文献+

基于万有引力定律的人脸识别方法 被引量:3

Face Recognition Based on Law of Universal Gravitation
下载PDF
导出
摘要 把万有引力定律引入到人脸识别中,构建基于万有引力定律的人脸识别模型。用传统的主成分分析方法对图像进行特征提取,建立图像与图像之间的相似度模型以及各个类别对图像潜在作用力的表达式,根据该作用力大小决定图像所属类别。在ORL人脸数据库上的实验表明,该模型有一定的可行性。 The law of universal gravitation is introduced to face recognition. A model of identification based on the law is established. Conventional method of Principal Component Analysis(PCA) is performed to extract the features of face image. The similarity between two face images and the expression of gravitation between each image and each class are formulated. The magnitude of the gravitation decides to which class the face image belongs. Experimental results obtained on ORL show that the model is feasible.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第11期181-182,210,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60472060,60572034) 教育部科学技术研究基金资助项目(105087) 中国科学院沈阳自动化研究所机器人学重点实验室基金资助项目(RL200108) 江苏省自然科学基金资助项目(BK2004058,BK2006081) 图像处理与图像通信实验室开放基金资助项目(KJS03038)
关键词 万有引力 主成分分析 特征提取 universal gravitation Principal Component Analysis(PCA) feature extraction
  • 相关文献

参考文献6

  • 1余冰,金连甫,陈平.利用标准化LDA进行人脸识别[J].计算机辅助设计与图形学学报,2003,15(3):302-306. 被引量:22
  • 2吴小俊,杨静宇,王士同,刘同明,Josef Kittler.统计不相关最佳鉴别矢量集的本质研究[J].中国工程科学,2004,6(2):44-47. 被引量:6
  • 3Foley D H, Sammon J W. An Optimal Set of Discriminant Vectors[J]. IEEE Trans. on Computers, 1975, 24(3):281-289.
  • 4Duchene J, Leclercq S. An Optimal Transformation for Discriminant and Principal Component Analysis[J]. IEEE Trans. on PAMI, 1988, 10(6): 978-983.
  • 5Hong Ziquan. Algebraic Feature Extraction of Image for Recognition[J]. Pattern Recognition, 1991, 24(3): 211-219.
  • 6Kwak K C, Pedrycz W. Face Recognition Using a Fuzzy Fisherface Classifier[J]. Pattern Recognition, 2005, 38(11): 1717-1732.

二级参考文献12

  • 1洪子泉,杨静宇.基于奇异值特征和统计模型的人像识别算法[J].计算机研究与发展,1994,31(3):60-65. 被引量:49
  • 2R Chellappa, C L Wilson, S Sirohey. Human and machine recognition of faces: A survey [J]. Proceedings of the IEEE, 1995, 83(5): 705~741
  • 3P N Belhumeur, J P Hespanha, D J Kriegman. Eiegnfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 4D Swets, J Weng. Using discriminant eigenfeatures for image retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (8): 831~836
  • 5M Turk, A Pentland. Eigenfaces for Recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86
  • 6H Yu, J Yang. A direct LDA algorithm for high dimensional data with application to face recognition[J]. Journal of Pattern Recognition, 2001, 34(10): 2067~2070
  • 7L Chen, H Liao, M Ko et al. A new LDA-based face recognition system which can solve the small samples size problem [J]. Journal of Pattern Recognition, 2000, 33(10): 1713~1726
  • 8M Loog, R P W Duin, R Haeb-Umbach. Multiclass linear dimension reduction by weighted pairwise fisher criteria [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (7): 762~766
  • 9AT & T Laboratories Cambridge. The ORL Database of Faces[OL]. http:∥www.cam-orl.co.uk/facedatabase.html
  • 10金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108. 被引量:51

共引文献26

同被引文献43

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部