期刊文献+

基于NVD的高精度非振荡离散格式的构建

Development and Assessment of High-accuracy Non-oscillatory Discrete Scheme Based on NVD
下载PDF
导出
摘要 出于流体数值模拟中对高精度离散格式的需求,提出了一种基于NVD性质的混合型格式。算例表明,与其他高精度格式相比,该格式使用简单、精度高、稳定、实用、有效。 A new scheme for convection term discretization is developed based on the behavior of well-known NVD scheme. The new scheme is a combination of several simple common used schemes. It can not only preserve high-accuracy in smooth region of fluid, but also keep non-oscillatory in confusion region. By comparison with some other high-accuracy schemes, it is clearly indicated that the proposed scheme has two characteristics: simple and higher accuracy.
出处 《水电能源科学》 2008年第3期66-68,27,共4页 Water Resources and Power
基金 国家自然科学基金资助项目(50679025)
关键词 NVD性质 TVD性质 高精度 非振荡 NVD property TVD property high-accuracy non-oscillatory
  • 相关文献

参考文献14

  • 1Leonard B P. A stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation[J]. Comput. Methods Appl. Mech. End, 1979,19 : 59-98
  • 2Harten A. High Resolution Total-variation-stable Finite-differenee Sehemes[J]. SIAM J. Num. Anal. 1984,21:1-23
  • 3Leonard B P. Simple High-accuracy Resolution Program for Convective Modelling of Discontinuities [J]. I'nt. J. Num. Meth. in Fluids 1998, 8:1 291- 1 318
  • 4Roe P L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes[J]. J. Comp. Phys. 1981,43:357-372
  • 5Van Leer B. Towards the Ultimate Conservative Difference Scheme. V. A Seconda-order Sequel to Godunov's method [J]. J. Comp. Phys. 1979, 32: 101-136
  • 6Van Leer B. Flux-vector Splitting for the Euler Equations[A]. In E. Krause (Ed.), Eighth International Conferenee on Numerical Methods in Fluid Dynamics,Berlin: Springer. Lecture Notes in Physics 1982,170.-507-512
  • 7Van Leer B. On the Relation Between the Upwind- differencing Schemes of Godunov, Enquist-osher and Roe[J]. SIAM J. Sci. Star. Comp. 1984,5:1-20
  • 8Shu C W, Osher S. Efficient Implementation of Essentially Non-oscillatory Shock-capturing Schemes [J].J. Comput. Phys,1988,77:439-471
  • 9Liu X D,Osher S. Convex ENO High Order Multi- dimensional Schemes Without Field by field Decomposition or Staggered Grids[J]. J. Comput. Ohys, 1998,142:304-338
  • 10Sweby P K. High Resolution Schemes Using Fluxalimiters for Hyperbolic Conservation Laws [J]. SIAM J. Num. Anal. 1984,21: 995-1 011

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部