期刊文献+

一种结构自适应免疫抗体竞争网络的非监督图像分割 被引量:2

Unsupervised image segmentation using an immune antibody competitive network
下载PDF
导出
摘要 提出一种新的结构自适应免疫抗体竞争网络,无须预先设定聚类数目,实现了完全非监督的图像分割.基于自组织特征映射神经网络的基本概念,提出一个新的免疫抗体邻域概念,增强了网络的鲁棒性.根据大脑皮层长期记忆的形成原理提出一个长期记忆因子,提高了算法收敛的速度.为了抑制噪声抗原对抗体网络的影响,提出3种抗体死亡操作.以上这些改进措施可使生成的抗体网络更好地反映抗原的分布特征,得到自适应的网络结构.将此算法用于合成纹理图像、遥感图像和合成孔径雷达图像的分割,都取得了较好的分割结果. This paper proposes a fully unsupervised image segmentation algorithm by using a novel structural adaptation artificial immune antibody competitive network without a predefined number of clustering. Based on the basic conception of self organizing feature map, a new immune antibody neighborhood is presented to enhance the robustness of the network, and inspired by the long-term memory in cerebral cortices, a long-term memory coefficient is introduced into the network to improve the convergence speed of the algorithm, and three death operations are presented to eliminate those antibody droves by noise antigen. With above advanced methods, the model can adaptively map input data into the antibody output space, which has a better adaptive net structure. This approach is applied to segment a variety of images into homogeneous regions, including synthetic texture images, remote images and SAR images, and experimental results illustrate the effectiveness of the proposed novel algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第3期444-448,494,共6页 Journal of Xidian University
基金 国家自然科学基金资助(60703107,60703108) 国家“863”计划资助(2006AA01Z107,2007AA12Z136,2007AA12Z223) 陕西省自然科学基金资助(2007F32)
关键词 非监督图像分割 人工免疫网络 结构自适应 数据聚类 unsupervised image segmentation artificial immune networks structural adaptation data clustering
  • 相关文献

参考文献8

  • 1刘若辰,杜海峰,焦李成.基于柯西变异的免疫单克隆策略[J].西安电子科技大学学报,2004,31(4):551-556. 被引量:9
  • 2李洁,高新波,焦李成.一种基于CSA的模糊聚类新算法[J].电子与信息学报,2005,27(2):302-305. 被引量:2
  • 3Timmis J,Hunt J.An Artificial Immune System for Data Analysis[J].BioSystems,2000,55(1):143-150.
  • 4de Castro L N,V Zuben F J.aiNet:an Artificial Immune Network for Data Analysis[C]//Data Mining:a Heuristic Approach:chapter XII.Hershey:Idea Group Publishing,2001:231-259.
  • 5Helder K,de Castro L N.RABNET:a Real-Valued Antibody Network for Data Clustering[C]//GECCO'05.Washington:Association for Computing Machinery,2005:371-372.
  • 6Kohonen T.The Self-organizing Map[J].Neurocomput,1998,(21):1-6.
  • 7Clausi D,Yue B.Comparing Co-occurrence Probabilities and Markov Random Fields for Texture Analysis[J].IEEE Trans on Geosci Remote Sens,2004,42(1):215-228.
  • 8Kim S C,Kang T J.Texture Classification and Segmentation Using Wavelet Packet Frame and Gaussian Mixture Model[J].Pattern Recognition,2007,40(4):1207-1221.

二级参考文献17

  • 1潘正军 康立山.演化计算[M].北京:清华大学出版社,1998..
  • 2陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16.
  • 3Schwefel H P, Mnner R. On Parallel Problem Solving from Nature[A]. Lecture Notes in Computer Science, Proc of 1st Int1 Conf[C]. Berlin: Springer-Verlag, 1991.
  • 4Fogel D B, Atmar J W. Comparing Genetic Operators with Gaussian Mutations in Simulated Evolutionary Processing Using Linear Systems[J]. Biological Cybernetics, 1993, 63(2): 111-114.
  • 5Schwefel H P. Evolutionary Optimum Seeking[M]. New York: John Wiley&Son, 1995.
  • 6Szu H H, Hartley R L. Nonconvex Optimization by Fast Simulated Annealing[J]. Proceeding of IEEE, 1987, 75(3): 1538-1540.
  • 7Kappler C. Are Evolutionary Algorithms Improved by Larger Mutations?[A]. In Parallel Problem Solving from Nature (PPSN) Ⅳ[C]. Berlin: Springer-Veralg, 1996. 346-355.
  • 8Yao X. A New Simulated Annealing Algorithms[J]. Int J of Computer Math, 1995, 56(1): 162-168.
  • 9Yao X, Liu Y. Fast Evolutionary Programming[A]. Proc of the Fifth Annual Conference on Evolutionary Programming[C]. Cambridge: MIT Press, 1996. 451-461.
  • 10Yao X, Lin G, Liu Y. An Analysis of Evolutionary Algorithms Based on Neighbourhood and Step Sizes[A]. Proc of the Sixth Annual Conference on Evolutionary Programming[C]. Berlin: Springer-Veralg, 1997. 297-307.

共引文献9

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部