摘要
研究了两个相关点过程之间相关性的描述。我们指出当两个点过程是泊淞过程时,相关系数能充分描述它们之间的相互关系。当两个点过程是更新过程时,相关系数随着时间窗口的变化而变化,是时间窗口的递增函数。于是我们提出用相关系数曲线来描述两个更新过程之间的相互关系。这些结论对优化神经网络的设计将是很有用的。
concerns the correlation relationship between two point processes. We conclude: when the point process is Poisson, a single cofficient is enough to descibe the correlation relationship. However, for renewal processes. The correlation cofficient is a increasing function of time binsize. So we introduce the correlation coeffcient curve to characterize the correlation relationship. The conclusions should be useful for the design of neural networks.
出处
《数学理论与应用》
2008年第2期43-46,共4页
Mathematical Theory and Applications
基金
湖南省教育厅科学研究项目(04C357)
关键词
点过程
更新过程
相关系数曲线
Point processes Renewal processes Correlation coefficient curve