期刊文献+

基于空间实体的传染病蔓延模拟建模研究 被引量:5

Simulation of spread of infectious diseases based on geo-entity
下载PDF
导出
摘要 提出了一种基于空间实体的传染病元胞自动机模型,基于该模型,在GIS环境中建立了传染病蔓延的可视化模拟程序,并通过模拟算例分别给出了局部传染和全局传染两种典型传播行为的模拟结果。对模拟结果的分析表明,采用符合传染病流行特征的空间相关性模式能够得到更合理的模拟结果。通过结合GIS的空间数据可视化和分析功能,建议的元胞自动机模型能可视化展示传染病蔓延过程,察明影响传染病传播过程的关键参数,评估特定干预措施(如改善卫生条件、隔离感染者、接种疫苗等)的效果,获取疾病的空间分布信息和统计信息,为传染病的防治决策提供科学的依据。 A geo-entity based cellular automata model of infectious diseases is presented.Through the model the authors develop visual simulation program in GIS environment,and give out the simulation results of two typical spread dynamics of local contagion and global contagion (due to the existence of roads),The analysis for the results show that the reasonable results can be gained with neighbor patterns suitable for the epidemiological characteristics.Coupled with the functionalities of spatial analysis and visualization of GIS,the proposed cellular automata model can visualize the epidemic procedure of infectious diseases,ascertain the key parameters that affected the spread of diseases,evaluate the effect of some interventions(such as vaccination,isolation and so on),and calculate the information of spatial distribution and statistics of epidemics.Consequently,provide decision makers with scientific clues.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第18期190-193,共4页 Computer Engineering and Applications
基金 中国博士后科学基金(the Postdoctoral Foundation of China under Grant No.20070410552)
关键词 元胞自动机 地理信息系统 传染病 建模 可视化模拟 cellular automata GIS infectious diseases modeling visual simulation
  • 相关文献

参考文献16

  • 1Kermack W O.McKendrick A G.Contributions to the mathematical theory of epidemics[C]//Proceedings of the Royal Society of London, 1927 : 700-72 I.
  • 2Anderson R M,May R M.lnfectious diseases of humans:dynamics and control[M].Oxford:Oxford Univ Press, 1991.
  • 3Murray J D.Mathematical biology[M].Berlin :Springer, 1993.
  • 4Diekmann O,Heersterbeek J A P.Mathematical epidemiology of infectious diseases[M],New York:Wiley,2000.
  • 5Wang W D.Global behavior of an SEIRS epidemic model with time delays[J].Applied Mathematics Letters,2002,15:423-428.
  • 6Sirakoulis G C,Karafyllidis I,Thauailakis A.A cellular automaton model for the effects of population movement and vaccination on epidemic propagation[J].Ecological Modelling,2000,133:209-223.
  • 7White S H,del Rey A M,Rodriguez Sanchez G.Modeling epidemics using cellular automata[J].Applied Mathematics and Computation, 2007,186 : 193-202.
  • 8Willox R,Grammaticos B,Carstea A S,et al.Epidemic dynamics: discrete-time and cellular automaton : models[J],Physica A,2003,328: 13-22.
  • 9Ahmed E,Agiza H N.On modeling epidemics including latency ,incubation and variable susceptibility[J].Physica A, 1998,253:347-352.
  • 10Benyoussef A,Hafidallah N E,Elkenz A,et al.Dynamics of HIV infection on 2D cellular automata[J].Physica A,2003,322:506-520.

二级参考文献10

  • 1.Website of sina.[新浪网,http://www.sina.com.].,.
  • 2.Newspaper of Amusement Information in Beijing,2003,May 20.[北京娱乐信报,2003—05—20.http://tech.scol.com.cn/kjnews/20030520/200352094519.htm.].,.
  • 3.News Column in Website of the Ministry of Science and Techndogy of China,2003.[中华人民共和国科技部网页新闻栏目.www.most.gov.cn.,2003.
  • 4中国科学院遥感应用研究所.系统动力学支持非典防治决策[N].科学时报社,2003-05—09..
  • 5.Statistical Data Analysis Center,Beijing Normal University,2003,[北京师范大学数据统计与分析中心.http://math.bnu.edu.cn/~chj.].,2003.
  • 6.第11号.传染性非典型肺炎密切接触者判定标准和处理原则(试行)[S].,2003..
  • 7.Newspaper of Amusement Information in Beijing,2003,May 20[N].北京娱乐信报,2003—05—20.
  • 8北京防治非典型肺炎联合工作小组统计信息中心.北京非典疫情专题调查报告[R].,2003-05..
  • 9Kermack W O, McKendrick A G. A Contribution to the Mathematical Theory of Epidemics[J] Proceedings of the Royal Society of London ,Series A, 1927,115(772) :700--721.
  • 10曹春香,李小文,闫琇,金水高.地理空间信息与SARS疫情走势[J].遥感学报,2003,7(4):241-244. 被引量:10

共引文献21

同被引文献50

引证文献5

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部