期刊文献+

机械故障诊断的神经网络技术 被引量:6

A Neural Network Technology for Mechanical Failure Diagnosis
下载PDF
导出
摘要 首先论述各种状态信息和设备状态之间的对应关系,即模式分类的重要性.然后通过学习,建立故障诊断的神经网络模型,并应用于大型旋转机械的故障诊断.实验研究表明,神经网络能够较好地表达训练样本要求的决策区域,具有较强的分类能力;利用机械振动特征信息进行训练的神经网络对大型旋转机械单个故障有较好的联想能力,其识别效果令人满意,投入现场应用是可行的. The corresponding relation between all kinds of feature information and equipment condition is dicussed firstly in this paper,that isthe importance of pattern classification. The models of the neural network are built by learning and applied to failure diagnosis of large scale rotating machinery. The experiments show that the neural network can better express the determinative regions demanded by training samples,it has strong capabilities of classifiction; the neural network trained through viblation information has a good associative capability for the single failure of large scale rotating machinery. Its classification effect is satisfactory using it on the spot is feasiable.
出处 《河北工业大学学报》 CAS 1997年第4期10-15,共6页 Journal of Hebei University of Technology
基金 河北省自然科学基金
关键词 神经网络 模式识别 故障诊断 旋转机械 Neural networks, Pattern classification, Failure diagnosis, Large scale rotating machinery, Vibration imformation
  • 相关文献

参考文献2

  • 1曾昭君,机械工程学报,1992年,28卷,1页
  • 2屈梁生,机械故障诊断学,1986年

同被引文献14

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部