期刊文献+

基于保持近邻判别嵌入的人脸识别 被引量:11

Face recognition using neighborhood preserving discriminant embedding
下载PDF
导出
摘要 保持近邻嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构的属性.虽然NPE已在一些领域得到应用,但解决识别任务还有局限性.为改进NPE的识别性能,提出了一种保持近邻判别嵌入(NPDE)人脸识别方法.在NPDE算法中,有效结合了LDA和NPE的思想,具有很强的判别力,还能根据先验类标签信息保持局部邻域的固有几何关系.在ORL人脸库以及Yale人脸数据库上的实验结果表明提出的方法是有效的. Neighborhood preserving embedding (NPE) is a subspaee learning algorithm,which has the property of preserving local neighborhood structure on the data manifold. Although NPE has been applied in many fields, it has limitations to solve recognition task. To improve the recognition performance of NPE, a new method, called neighborhood preserving discriminant embedding (NPDE), is proposed for face recognition. NPDE effectively combines the ideas of LDA and NPE, i.e. it can hold the strong discriminating power while preserving the intrinsic geometry relations of the local neighborhoods according to prior class-label information. Experimental results on ORL face database and Yale face database demonstrate the effectiveness of the proposed method.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第3期378-382,共5页 Journal of Dalian University of Technology
基金 大连理工大学-中国科学院沈阳自动化研究所联合基金资助项目(2006)
关键词 人脸识别 子空间学习 保持近邻嵌入 保持近邻判别嵌入 face recognition subspace learning neighborhood preserving embedding neighborhoodpreserving discriminant embedding
  • 相关文献

参考文献10

  • 1TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86
  • 2TURK M,PENTLAND A.Face recognition using eigenfaces[C]//Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society Press,1991:586-591
  • 3BELHUMEUR P,HESPANHA J,KRIEGMAN D.Eigenfaces vs.Fisherfaces:Recognition using class specific linear projection[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720
  • 4ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(12):2323-2326
  • 5BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1737-1396
  • 6TENENBAUM J B,DE SILVA V,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(12):2319-2323
  • 7HE X F,CAI D,YAN S C,et al.Neighborhood preserving embedding[C]//Proceedings of the Tenth IEEE International Conference on Computer Vision.Washington D C:IEEE Computer Society Press,2005:1208-1213
  • 8WANG X,TANG X.Unified subspace analysis for face recognition[C]//Proceedings of the Ninth International Conference on Computer Vision.Washington D C:IEEE Computer Society Press,2003:679-686
  • 9SAMARIA F,HARTER A.Parameterization of a stochastic model for human face identification[C]//Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision.Sarasota:IEEE,1994:138-142
  • 10Yale.The Yale face database[EB/OL].[2006-09-25].http://cvc.yale.edu/projects/yalefaces/yalefaces.html

同被引文献112

  • 1宋伟,赵清杰,宋红,樊茜.基于关键块空间分布与Gabor滤波的人脸表情识别算法[J].中南大学学报(自然科学版),2013,44(S2):239-243. 被引量:7
  • 2唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4张志伟,夏克文,杨帆,杨瑞霞.一种应用于人脸识别的有监督NMF算法[J].光电子.激光,2007,18(5):622-624. 被引量:7
  • 5ZHI R C, RUAN Q Q. Two-dimensional direct and weighted linear discriminant analysis for face recognition [ J]. Neurocomputing, 2008, 71(16/18) : 3607 -3611.
  • 6TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991,3(1) : 71 - 86.
  • 7BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):711 -720.
  • 8XU Y, ZHANG D, YANG J, et al. An approach for directly extracting features from matrix data and its application in face recognition [ J]. Neurocomputing, 2008, 71(10/12) : 1857 - 1865.
  • 9HE X, CAI D, YAN S, et al. Neighborhood preserving embedding [ C]// ICCV 2005: Tenth IEEE International Conference on Computer Vision. Beijing: [ s. n. ], 2005, 2:1208 - 1213.
  • 10ROWEIS S, SAUL L K. Nonlinear dimensionality reduction by lo - cally linear embedding [ J]. Science, 2000, 290(5500) : 2323 - 2326.

引证文献11

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部