期刊文献+

混合蓝色和绿色发射的高亮度白色有机电致发光器件(英文) 被引量:7

Bright White Organic Light-Emitting Diode Mixed Blue and Green Emission
下载PDF
导出
摘要 使用星形六苯芴类新材料1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2-yl)benzene(HKEthFLYPh)分别制备了三种不同结构的有机电致发光器件.在结构为indium-tin oxide(ITO)/NPB(40nm)/HKEthFLYPh(10nm)/Alq3(50nm)/Mg:Ag(200nm)的器件中,获得了两个电致发光谱峰分别位于435和530nm处的明亮白光.HKEth-FLYPh是能量传输层;N,N′-bis-(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine(NPB)是空穴传输层和蓝色发光层;tris(8-hydroxyquinoline)aluminum(Alq3)是电子传输层和绿色发光层.结果表明,当驱动电压为15V时,器件的最大亮度达到8523cd·m-2;在5.5V时,器件达到最大流明效率为1.0lm·W-1.在电压为9V时,CIE色坐标为(0.29,0.34).此外,通过改变HKEthFLYPh层的厚度,发现蓝色发射的相对强度随着HKEthFLYPh层厚度的增加而增强. Double-layer and triple-layer organic light-emitting diodes (OLEDs) were fabricated using a novel starshaped hexafluorenylbenzene organic material, 1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2-yl)benzene (HKEthFLYPh) as an energy transfer layer, N,N'-bis-(1-naphthyl)-N,N'-diphenyl-(1,1 '-biphenyl)-4,4'-diamine (NPB) as a hole-transport layer (HTL) and blue emissive layer (EML), and tris (8-hydroxyquinoline)aluminum (Alq3) as an electron-transport layer (ETL) and green light-emitting layer. Bright white light was obtained with a triple-layer device structure of indiumtin-oxide (ITO)/NPB (40 nm)/HKEthFLYPh (10 nm)/Alq3 (50 nm)/Mg:Ag (200 nm). A maximum luminance of 8523 cd-m-2 at 15 V and a power efficiency of 1.0 lm·W^-1 at 5.5 V were achieved. The Commissions Internationale de L' Eclairage (CIE) coordinates of the device were (0.29, 0.34) at 9 V, which located in white light region. With increasing film thickness of HKEthFLYPh, light emission intensity from NPB increased compared to that of Alq3.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第6期977-980,共4页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20674049) 国家杰出青年基金(60425101) 教育部新世纪优秀人才计划(NCET-06-0812) 电子科技大学中青年学术带头人计划(060206)资助
关键词 白色有机电致发光器件 星形六苯芴 HKEthFLYPh 能量传递 White organic light-emitting diode (WOLED) Star-shaped hexafluorenylbenzene HKEthFLYPh Energy transfer
  • 相关文献

参考文献20

  • 1Tang, C. W,; Vanslyke, S. A. Appl. Phys. Lett., 1987, 51:913.
  • 2Kido, J.; Kimura, M.; Nagai, K. Science, 1995, 267:1332.
  • 3Li, G.; Shinar, J. Appl. Phys. Lett., 2003, 83:5359.
  • 4Hamada, Y.; Sano, T.; Fujii, H.; Nishio, Y.; Takahashi, H.; Shibata, K. Jpn. J. Appl. Phys., 1996, 35:L1339.
  • 5Tong, Q. X.; Lai, S. L.; Chart, Y. M.; Tang, J. X.; Kwong, H. L.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett., 2007, 91:023503.
  • 6Chang, C. C.; Chen, J. F.; Hwang, S. E.; Chen, C. H. Appl. Phys. Lett., 2005, 87:253501.
  • 7Wang, J.; Jiang, Y. D.; Yu, J. S.; Lou, S. L.; Lin, H. Appl. Phys. Lett., 2007, 91:131105.
  • 8Jiang, Y. D.; Wang, J.; Yu, J. S.; Lou, S. L.; Lin, H. Jpn. J. Appl. Phys., 2007, 46:523.
  • 9Sun, Y. R.; Giebink, N. C.; Kanno, H.; Ma, B. W.; Thompson, M. E.; Forrest, S. R. Nature, 2006, 440:908.
  • 10Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D, C.; Koeberg, M. J. Am. Chem. Soc., 2004, 126: 13695.

同被引文献303

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部