摘要
研究各向同性地基中含一个圆柱形弹性夹杂的地基沉陷问题。考虑全场的应力、变形特征,运用复变函数的罗朗级数展开技术,构造合适的应力函数,结合夹杂的边界条件和无穷远的性态,获得了全场复势的解析表达。数值结果显示:由于两相材料剪切模量之比的不同,在某个范围内沉陷量大于基底中点沉陷;在这个范围之外,则小于基底中点沉陷。当夹杂埋深为夹杂半径的5倍以上时,就可以运用所得结果,而不致引起太大误差;含圆形隧洞和刚性夹杂的问题可作为特殊情况得到。
The settlement of foundation with a cylindrically elastic inhomogeneity is researched.By considering the stress-deformation characteristic of the total field and applying the technique of series expansion,the appropriate stress functions are constructed;and accordingly the complex potentials of the rock mass are obtained.The numerical results indicate that to the different ratios of the shear moduli between the matrix and the inhomogeneity the settlement value of foundation boundary in some scope is greater than in the middle point of foundation base;and the value in other scope is less than in the middle point of foundation base.The results of the paper are enough accurate when the buried depth of the inhomogeneity is greater than 5 times of the radius of the inhomogeneity.As two special cases,the solutions for a circular tunnel and a rigid inhomogeneity in foundation are recovered.
出处
《岩土力学》
EI
CSCD
北大核心
2008年第6期1575-1579,共5页
Rock and Soil Mechanics
基金
国家重点自然科学基金资助项目(No.50539080)
国家自然科学基金面上项目(No.50574053)
关键词
圆柱形弹性夹杂
地基沉陷
复势理论
应力集中
circular elastic inhomogeneity
foundation settlement
theory of complex potential
stress concentration