期刊文献+

三维医学图像分割的改进量子进化搜索算法 被引量:3

Improved Quantum-inspired Evolutionary Algorithm for 3D Medical Images Segmentation
原文传递
导出
摘要 传统量子进化算法用于搜索某些函数极值时精确度较低且稳定性较差。针对该问题,借鉴模拟退火算法,根据进化代数及个体的适应度值,修正了传统量子进化算法旋转门函数的旋转角度值,并应用于三维医学图像分割,从而形成了一种用于三维医学图像分割的改进量子进化算法。100次阈值计算实验结果表明,提出的分割算法与传统量子进化算法相比,在保持了传统量子进化算法收敛速度快特点的同时,可大大提高算法在三维分割中的精确性和稳定性。 The traditional quantum-inspired evolutionary algorithm is sometimes inaccurate and instable when it is used in searching the best solutions of a function. To solve the problem, the Simulated Annealing idea was employed into the quantum-inspired evolutionary algorithm, and formed an improved one for 3D medical images segmentation. According to the evolutionary generation and the fitness values of the solutions, the angle of the rotation gate in the traditional algorithm was modified. The thresholds searching results for 100 times show that the accuracy and the stability of the proposed algorithm that maintains the high-speed of the convergence are better than that of the traditional quantum-inspired evolutionary algorithm.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第11期2942-2945,共4页 Journal of System Simulation
基金 国家博士点基金(20040699015)
关键词 医学图像 三维分割 量子进化算法 模拟退火 medical image 3D segmentation quantum-inspired evolutionary algorithm Simulated Annealing
  • 相关文献

参考文献11

  • 1Lakare S A. Ray Based Exploration of Volumetric Data [D]. Stony Brook: State University of New York, 2004.
  • 2Kaput J N, Sahoo P K, Wong A K C. A New Method of Gray Level Picture Thresholding Using the Entropy of the Histogram [J]. Computer Vision, Graphics, and Image Processing (S0734-189X), 1985, 29(3): 273-285.
  • 3张金龙,赵芙生.基于遗传算法的三维重构图像阈值分割[J].南京师范大学学报(工程技术版),2005,5(1):5-7. 被引量:8
  • 4蔡华杰,田金文.三维脑分割中灰度阈值的选取方法[J].武汉理工大学学报,2006,28(4):122-124. 被引量:3
  • 5Fogel D B. Evolutionary Computation [M]. New York: IEEE Press, 1998.
  • 6Hey T. Quantum Computing: an Introduction [J]. Computing & Control Engineering Journal (S0956-3385), 1996, 10(3): 105-112.
  • 7Han K H, Kim J H. Quantum-inspired Evolutionary Algorithm for a Class of Combinatorial Optimization [J]. IEEE Transactions on Evolutionary Computation (S1089-778X), 2002, 6(6): 580-593.
  • 8Talbi H, Draa A, Batouche M. A New Quantum-inspired Genetic Algorithm for Solving the Traveling Salesman Problem [C]// Proceedings of the 2004 IEEE International Conference on Industrial Technology. USA: IEEE, 2004:1192-1197.
  • 9Zhang G X, Gu Y'J, Hu L Z, et al. A Novel Genetic Algorithm and Its Application to Digital Filter Design [C]//Prec. of IEEE International Conference on Intelligent Transportation Systems. USA: IEEE, 2003, 2: 1600-1605.
  • 10李映,张艳宁,赵荣椿,程英蕾,焦李成.免疫量子进化算法[J].西北工业大学学报,2005,23(4):543-547. 被引量:11

二级参考文献21

  • 1朱东柏,马春秋.等电阻电压法在空心干式电抗器设计中的应用[J].变压器,1994,31(7):21-23. 被引量:18
  • 2[1]Kapur J, Sahoo P, Wong A. A new method for gray-level picture threshold using the entropy of the histogram[J]. Computer Vision, Graphics and Image Processing,1985,29(2):273-285.
  • 3[2]Sahoo P, Soltani S, Wong A. A survey of threshold techniques[J]. Computer Vision, Graphics and Image Processing,1988,41(3):233-260.
  • 4于晓含,朱哈.伊垒.叶斯基,欧堤.斯佩拉,奥立.哈特恩,图莫.维克马基,汤伊凡.卡特拉.基于区域增长及边缘检测的一种图象分割方法[J].北方交通大学学报,1997,21(1):47-52. 被引量:6
  • 5Kitano H. Empirical studies on the speed of convergence of the neural network training by genetic algorith [A]. Proc of AAAI-90 [C]. Menlo Park,USA:The AAAI Press,1990.
  • 6David E. Goldberg. Genetic algorithms in search, optimization, and machine learning [M]. New York: Addison-Wesley Publishing Company Inc, 1989.
  • 7Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Trans. On Systems, Man and Cybernetics, 1994, 24(4): 656 -667.
  • 8MARRD.视觉计算理论[M].北京:科学出版社,1988..
  • 9Fogel D B. Evolutionary Computation. New York: IEEE Press, 1995, 135~155.
  • 10周家驹 何险峰译.演化程序—遗传算法和数据编码的结合[M].北京:科学出版社,2000..

共引文献49

同被引文献26

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部