期刊文献+

激光脉冲在等离子体中的压缩分裂 被引量:2

Self-compression and splitting of laser pulse in plasmas
原文传递
导出
摘要 通过数值求解一维非线性薛定谔方程,研究了圆偏振入射激光脉冲在初始密度范围为1/4到略低于1倍临界密度的等离子体中的自压缩和分裂现象.提高等离子体密度和入射激光强度以及减小脉冲宽度可以在更短的传输距离获得有效的激光脉冲压缩,压缩后的脉冲半高宽度可达到初始脉冲半高宽度的1/35,甚至更小.这种压缩是激光脉冲在等离子体中形成高阶孤子的过程中产生的,可以获得比在稀薄等离子体中更好的压缩比例.数值计算的结果给出了该情况下激光脉冲在等离子体中自压缩后形成的高阶孤子分裂.利用一维粒子数值模拟程序(particle-in-cell,PIC)也观察到了脉冲的压缩和分裂现象,得到了与数值计算一致的结果. We study the self-compression and splitting of a circularly polarized laser pulse propagating in plasmas with density window from 1/4 critical to slightly below critical density by solving the nonlinear Schrdinger equation numerically. It is demonstrated by the numerical calculation that the effective self-compression of laser pulse can be achieved in even shorter distance by increasing both the background plasma density and intensity of the laser pulse, or decreasing the width of pulse. The full-width at half maximum of the compressed pulse can reach 1/35 of the initial one's or even smaller. It has been found that this kind of self-compression occurs in the process of formation of a high-order soliton when a laser pulse propagates in a plasma, so that we can obtain greats compression ratio than in thin plasmas. We also obtained the splitting of a high-order soliton formed after self-compression of a laser pulse propagating in plasmas from the result of the numerical calculation in this situation. The phenomenon of self-compression and splitting is also observed by using one-dimensional particle-in-cell simulations and the result was consistent with the numerical calculation.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第6期3646-3652,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10547122) 山东省自然科学基金(批准号:Q2006A07)资助的课题~~
关键词 非线性薛定谔方程 自压缩 脉冲分裂 粒子模拟 nonlinear Schrdinger equation, self-compression, pulse splitting, particle-in-cell simulations
  • 相关文献

参考文献3

二级参考文献9

  • 1Agrawal G P, Nonlinear fiber optics.Academic, San Diego, Calif,1989.105-146
  • 2Turitsyn S K, Fedoruk M P, Gornakova A, Reduced-power optical solitons in fiber lines with short-scale dispersion management.Optics Letters,1999,24(13):869-871
  • 3Gordon J P.Interaction forces among solitons in optical fibers.Optical Letters,1983,8(11):596-598
  • 4Stegeman G I.Optical spatial solitons and their interactions: universality and diversity.Frontiers in Optics,1999,286(19): 1518-1523
  • 5Hong B J,Yang C C.Interaction between femtosecond solitons in optical fibers.J Opt Soc Am(B),1991,8(5):1114-1121
  • 6盛政明 等.物理学报,1992,41:1796-1796.
  • 7钱士雄 王恭明.非线性光学--原理与进展[M].上海:复旦大学出版社,2000.431-433.
  • 8盛政明,张杰,余玮.强激光与等离子体相互作用中低频电磁场孤子波的产生及其捕获[J].物理学报,2003,52(1):125-134. 被引量:24
  • 9张秋菊,盛政明,张杰.周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子[J].物理学报,2004,53(3):798-802. 被引量:3

共引文献30

同被引文献26

  • 1Baltuska A, Wei Z Y, Pshenichnikov M S, et al. Optical pulse compression to 5 fs at a 1 - M HZ repetition rate[ J ]. Optics Letter, 1997, 22 (2) : 102 - 104.
  • 2Baltuska A, Wei Z Y, Pshenichnikov M S, et al. All- solid -state cavity -dumped sub- 5 -fs laser[ J]. Applied Physics Letters, 1997 ,65(2) :175 - 188.
  • 3Mima K, Ohsuga T, Takabe H, et al. Wakeless triple --soliton accelerator[ J]. Physical Review letters, 1986, 57 (12) :1421 -1424.
  • 4Kuehl H H, Zhang C Y. One - dimensional, weakly nonlinear electromagnetic solitary waves in a plasma [ J ]. Physical Review E , 1993,48 (2) : 1316 - 1323.
  • 5Wu H C, Sheng Z M, Zhang Q J, et al. Manipulatingultrashort intense laser pulse by plasma Bragg gratings [ J ]. Physical Plasmas, 2005, 12(11) :113103 - 1 - 113103 -5.
  • 6Lu Gaimin, Liu Yue, Yu M Y. Exact electrostatic waves in electron-positron plasmas[J]. Phys. Ser.,2010,81: 045503.
  • 7Asenjo F A, Mufioz V, Valdivia J A, et al. Circularly polarized wave propagation in magnetofluid dynamics for relativistic electron-positron plasmas[J]. Phys. Plasmas, 2009,16: 122108.
  • 8Liang E. Generation and astrophysical applications of relativistic pair plasmas with ultra-intense lasers[J]. AIP Conf. Proc., 2002,611: 369-374.
  • 9Liang E P, Wilks S C, Tabak M. Pair Production by Ultraintense Lasers[J]. Phys. Rev. Lett., 1998, 81: 4887-4890.
  • 10Marldund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Rev. Mod. Phys., 2006,78: 591-640.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部