摘要
为了使经典谱分割的Nystrm采样快速算法得到更清晰的结果,将权重马氏距离高斯核应用于其中,相对于常用的马氏距离高斯核,得到了更好的分割效果。结果表明,使用权重马氏距离高斯核更能准确的反映两个向量的相似度,从而实现准确的分割。
To obtain a better segmentation result, this paper used Weighted Mahalanobis Distance (WMD) Gaussian kernel for Nystrom-Ncut segmentation. It proves that weighted Mahalanobis distance Gaussian kernel is more appropriate for spectralgraph theoretic methods than Mahalanobis distance, because weighted Mahalanobis distance can compute the similarity between two pixels more accurately.
出处
《计算机应用》
CSCD
北大核心
2008年第7期1738-1741,共4页
journal of Computer Applications
关键词
谱分割
聚类
Ncut
Nystrfim估计
权重马氏距离
spectral graph partition
clustering
Ncut
Nystrom approximation
Weighted Mahalanobis Distance (WMD)