期刊文献+

基于多近似模型的交互式遗传算法 被引量:4

Interactive genetic algorithms with multiple approximate models
下载PDF
导出
摘要 人的疲劳问题是交互式遗传算法的核心问题,它制约了交互式遗传算法在复杂优化问题中的应用.为了解决该问题,本文提出基于多近似模型的交互式遗传算法.该算法首先将搜索空间划分,然后利用传统交互式遗传算法得到的数据,在不同子空间生成不同的近似模型,最后采用该模型近似人对进化个体的评价,从而减少人评价的数量,有效解决人的疲劳问题.算法性能分析及在服装进化设计系统中的应用验证了其有效性. Human fatigue is a key problem which restricts the application of interactive genetic algorithms to complicated optimization problems. An interactive genetic algorithm with multiple approximate models is proposed to deal with this problem. In this algorithm, the search space is divided into several subspaces, in which different approximate models are generated with data from traditional interactive genetic algorithms. The approximate model is applied to approximate human subjective evaluations on individuals, thus reducing the number of human evaluations and effectively resolving the human fatigue problem. The efficacy of the algorithm is validated through the performance analysis and the application to fashion evolutionary design systems.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第3期434-438,共5页 Control Theory & Applications
基金 国家自然科学基金(60304016 60575046 60775044) 教育部"新世纪优秀人才支持计划"资助项目.
关键词 遗传算法 交互 多近似模型 服装设计 genetic algorithms interaction multiple approximate models fashion design
  • 相关文献

参考文献12

  • 1TAKAGI H. Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation[J]. Proceedings of the IEEE, 2001, 89(9): 1275 - 1296.
  • 2CHO S B. Towards creative evolutionary systems with interactive genetic algorithm[J]. Applied lntelligence, 2002, 16(2): 129- 138.
  • 3TOKUMARU M, MURANAKA N, IMANISHI S. Virtual stylist project: examination of adapting clothing search system to user's subjectivity with interactive genetic algorithms[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2003: 1036- 1043.
  • 4SUGIMOTO F, YONEYAMA M. An evaluation of hybrid fitness assignment strategy in interactive genetic algorithm[C]//Proceedingsb of the 5th Australasia-Japan Joint Workshop on Intelligent and Evolutionary Systems. 2001:62 - 69.
  • 5LEE J Y, CHO S B. Sparse fitness evaluation for reducing user burden in interactive genetic algorithmiC]//Proceedings of the IEEE International Fuzzy Systems Conference. Piscataway, NJ: IEEE Press, 1999, 2:998 - 1003.
  • 6郝国生,巩敦卫,史有群,孙晓燕.交互式遗传算法的机器代替用户方法[J].模式识别与人工智能,2006,19(1):111-115. 被引量:8
  • 7BILES J A, ANDERSON P G, LOGGI L W. Neural network fitness functions for a musical IGA[C] // Proceedings of the International ICSC Symposium on Intelligent Industrial Automation and Soft Computing. 1996: 39- 44.
  • 8周勇,巩敦卫,郝国生,郭一楠,孙晓燕.交互式遗传算法基于NN的个体适应度分阶段估计[J].控制与决策,2005,20(2):234-236. 被引量:22
  • 9JIN Y C, OLHOFER M, SENDHOFF B. A framework for evolutionary optimization with approximate fitness functions[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(5): 481 - 494.
  • 10CHARYA M B, LUG J. DAFHEA: a dynamic approximate fitness based hybrid EA for optimization problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2003:1879 - 1886.

二级参考文献17

  • 1周勇,巩敦卫,郝国生,郭一楠,孙晓燕.交互式遗传算法基于NN的个体适应度分阶段估计[J].控制与决策,2005,20(2):234-236. 被引量:22
  • 2郝国生,巩敦卫,史有群,张勇,刘太湖.基于关系代数的遗传算法模型及其应用[J].东南大学学报(自然科学版),2004,34(B11):58-62. 被引量:4
  • 3郝国生,巩敦卫,史有群,王莉.基于满意域和禁忌域的交互式遗传算法[J].中国矿业大学学报,2005,34(2):204-208. 被引量:14
  • 4Takagi H. Interactive evolutionary computation:Fusion of the capabilities of EC optimization and human evaluation[J]. Proc of the IEEE, 2001,89 (9) : 1275-1296.
  • 5Biles J A, Anderson P G, Loggi L W. Neural network fitness functions for a musical IGA[A]. Proc of the Int ICSC Symposium on Intelligent Industrial Automation and Soft Computing[C]. UK, 1996;B39-44.
  • 6Lee Joo-young, Cho Sung-bae. Sparse fitness evaluation for reducing user burden in interactive genetic algorithm [A]. 1999 IEEE Internatil Fuzzy Systems Conference Proceedings [C]. Seoul, 1999, 2:998-1003.
  • 7Sugimoto F, Yoneyama M. An evaluation of hybrid fitness assignment strategy in interactive genetic algorithm[A]. Proc of the 5th Australasia-Japan Joint Workshop on Intelligent and Evolutionary Systems[C].Dunedin, 2001 :62-69.
  • 8Takagi H. Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation. Proc of the IEEE, 2001, 89(9):1275-1296
  • 9Kim H S, Cho S B. Application of Interactive Genetic Algorithm to Fashion Design. Engineering Applications of Artificial Intelligence, 2000, 13(6):635-644
  • 10Tokui N, Iba H. Music Composition with Interactive Evolutionary Computation. In: Proc of the 3rd International Conference on Generative Art. Milan, Italy, 2000, 215-226

共引文献25

同被引文献56

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部