期刊文献+

磁化等离子体的并行三维JEC-FDTD算法及其应用 被引量:4

The Parallel JEC-FDTD Algorithm for Magnetized Plasmas and Its Applications
下载PDF
导出
摘要 给出了三维磁化等离子体的电流密度卷积-时域有限差分(JEC-FDTD)算法的迭代公式,指出该算法与一般FDTD算法实现并行时的不同:增加了电流密度的迭代,以及并行计算时在子域交界面上增加了一些数据的交换.并实现了基于MPI(Message Passing Interface)的并行JEC-FDTD算法.然后用计算涂覆等离子体的金属球的雷达散射截面(RCS)的算例验证了并行程序的可靠性,并测试了并行程序在某集群上的并行效率.最后计算了涂敷磁化等离子体的全尺寸飞机的单站RCS.结果表明并行JEC-FDTD算法是可靠的,而且并行效率高,能计算各向异性磁化等离子体的电大尺寸目标的散射. Iterative formulas of JE convolution finite-difference time-domain (JEC-FDTD) algorithm for 3 dimension anisotropic magnetized plasmas were proposed. It had been Pointed out that the difference of the parallel JEC-FDTD algorithm and the general parallel FDTD algorithm. The current density iteration has been added, and more many datum have been exchanged in the common boundaries.And the parallel program of JEC-FDTD algorithm had been gotten based on the MPI. Parallel JEC-FDTD program was reliable by the example that RCS( radar cross section) of conduct sphere coated plasma had been calculated,and parallel efficiency of parallel program was tested in one cluster.Finally the back RCS of one airplane coated the magnetized plasmas was calculated by the parallel JEC-FDTD. The results indicate that the parallel JEC-FDTD is reliable; its parallel efficiency is high; and it has ability of deal with the scattering characteristics of the electrically large magnetized plasma targets.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第6期1119-1123,共5页 Acta Electronica Sinica
基金 国家重点基础研究项目(No.2002AA731181)
关键词 并行 时域有限差分 磁化等离子体 雷达散射截面 parallel FDTD magnetized plasma RCS
  • 相关文献

参考文献6

二级参考文献20

  • 1张玉,宋健,梁昌洪.并行共形FDTD算法及其在PBG结构仿真中的应用[J].电子学报,2003,31(z1):2142-2144. 被引量:9
  • 2徐利军,刘少斌,袁乃昌.用FDTD计算各向异性磁化等离子体涂敷二维目标的RCS[J].物理学报,2005,54(10):4789-4793. 被引量:4
  • 3[1]Luebbers R J,Hunsberger F and Kunz K S 1991 IEEE Trans.Antennas Propagat.39 29
  • 4[2]Young J L 1995 IEEE Trans.Antennas Propagat.43 422
  • 5[3]Nickisch L J and Franke P M 1992 IEEE Antennas Propagat.Mag.34 33
  • 6[4]Sullivan D M 1992 IEEE Trans.Antennas Propagat.40 1223
  • 7[5]Kelley D F and Luebbers R J 1996 IEEE Trans.Antennas Propagat.44 792
  • 8[6]Chen Q,Katsurai M and Aoyagi P H 1998 IEEE Trans.Antennas Propagat.46 1739
  • 9[8]Hunsberger F,Luebbers R and Kunz K 1992 IEEE Trans.Antennas Propagat.40 1489
  • 10[9]Young J L 1994 Radio Sci.29 1513

共引文献51

同被引文献24

  • 1刘少斌,张光甫,袁乃昌.等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析[J].物理学报,2004,53(8):2633-2637. 被引量:21
  • 2徐利军,刘少斌,袁乃昌.等离子体中的PLCDRC-ADI-FDTD方法[J].电子学报,2006,34(3):483-486. 被引量:4
  • 3A Taflove, S C Hagness. Computational Electrodynamics: The Finite-Difference Time-DomainMethod [ M ]. Norwood, MA: Artech House, 2005.
  • 4K Tsubota, H Igarashi, T Honma. A kinetic analysis of plasma sheaths by integral equation method[ J]. IEEE Transactions on Magnetics, 1997,33(2) : 1366 - 1369.
  • 5Y L Geng,X B Xu,L W Li. Characterization of electromagnetic scattering by a plasma anisotropic spherical shell[J]. IEEE Microw Wireless comport Lett, 2004,3(1) : 100 - 103.
  • 6R Luebbers,F P Hunsberger,K S Kunz,et al.A frequency dependent finite-difference time-domain formulation for dispersive material[ J ]. IEEE Trans Electromagn Compat, 1990, 32 ( 3 ) : 222 - 227.
  • 7Y Takayama, W Klaus. Reinterpertation of the auxiliary differential equation method for FDTD [ J].IEEE Microw Wireless compon Lett, 1994,12(3) : 102 - 104.
  • 8D M Sullivan. Z-transform theory and the FDTD method[ J]. IEEE Trans Antennas Propag, 1996,44( 1 ) :28 - 34.
  • 9Yee K S. Numerical solution of initial boundary value problems involving maxwell' s equations in isotropic media[J]. IEEE Trans Antennas Propagat, 1966, 14: 302 -307.
  • 10Yang Hang Wei. A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation [ J ]. Computer Physics Communications , 2009, 280 ( 1 ) : 55- 60.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部