期刊文献+

一类随机微分方程欧拉格式的收敛性

Convergence of the Euler scheme for a class of stochastic differential equations
下载PDF
导出
摘要 为进一步研究标量自治随机微分方程的数值解,给出了求解方程的欧拉格式,证明了方程的偏移系数和扩散系数均满足全局Lipschitz条件时的收敛性,并求出了局部收敛阶和均方强收敛阶.证明过程中放宽了限制条件,也得到了与系数满足全局Lipschitz条件和线性增长条件时相同的收敛阶. The Euler scheme for the scalar autonomous stochastic differential equations is presented in order to research the numerical solution of the equations. It is proved that the equations are convergent when the deviation coefficient and diffusion coefficient satisfy the global Lipschitz condition. The local convergence order and the mean square strong convergence order are presented as well. The solution process is carried out under relaxed definite conditions, but it also has the same convergence order when the coefficients of the equations satisfy the global Lipschitz condition and the linear growth condition.
作者 王新 朱永忠
机构地区 河海大学理学院
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期427-429,共3页 Journal of Hohai University(Natural Sciences)
关键词 随机微分方程 欧拉法 收敛阶 全局Lipschitz条件 stochastic differential equations Euler method convergence order global Lipschitz condition
  • 相关文献

参考文献5

二级参考文献29

  • 1Mao Xuerong, Marion G, Renshaw E. Convergence of the Euler shceme for a class of stochastic differential equations. International Mathematical Journal, 2002,1(1): 9~22
  • 2Tian Tianhai, Burrage K. Implicit taylor methods for stiff stochastic differential equations. Applied Numerical Mathematics, 2001, 38(3): 167~185
  • 3Burrage P M. Runge-Kutta methods for stochastic differential equations: [Ph. D Thesis]. Department of Mathematics, the University of Queensland, Australia,1998.
  • 4Kleoden P E, Platen E, Schurz H. Numerical solution of stochastic differential equations. Berlin: Spring Verlag, 1992.
  • 5MAO X. Exponential Stability of Stochastic Differential Equations[ M]. New York: Marcel Dekker, 1994.
  • 6MOHAMMED S E A. Stochastic Functional Differential Equations, Research Notes in Mathematics( Vol. 99) [ R]. London :Pitman, 1984.
  • 7BURRAGE K, BURRAGE P M. High strong order explicit Runge - Kutta methods for stochastic ordinary differential equation [ J ]. Appl Numer Math, 1996,22:81 - 101.
  • 8KLOEDEN P E, PLATEN E. Numerical Solution of Stochastic Differential Equations[ M]. Berlin:Springer, 1992.
  • 9MILSTEIN G N. Numerical Integration of Stochastic Differential Equations[ M]. Dordrecht: Kluwer Academic Publishers Group, 1995.
  • 10TIAN T H, BURRAGE K. Two -stage stochastic Runge -Kutta methods for stochastic differential equations[ J ]. BIT Numer Math, 2002,42:625-643.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部