期刊文献+

求解多峰函数的改进粒子群算法的研究 被引量:5

Study on an Improved Particle Swarm Optimization Algorithm for Solving Multi-peak Function
下载PDF
导出
摘要 针对标准粒子群算法进行多峰函数优化时存在的易陷入局部极值和搜寻效率低的问题,提出了子种群划分和自适应惯性权重改进方法来求解多峰函数.根据群体微粒的相似度将粒子群分成子群体,各子群体围绕一个有最佳适应值的群体中心进行建立,并通过几个经典函数进行求解.实验表明:改进的粒子群算法能快速有效地找到多峰函数的全局最佳值. In application of particle swarm optimization algorithm, the solution is usually misled to local minima resulting in compromised searching efficiency. To cope this drawback, the division of subpopulation and self-adaptive inertia weight are incorporated to PSO. The particle swarm is divided by subpopulation into subgroups close to the center of the swarm with the best fitness value judged by the similarity of particle swarm. Test of the improved algorithm using six benchmark functions indicates that the algorithm is capable of locating the global optimal value with less time-consumption and higher efficiency.
出处 《宁波大学学报(理工版)》 CAS 2008年第2期150-154,共5页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 浙江省自然科学基金(Y106080)
关键词 粒子群算法 多峰函数 子群体 particle swarm optimization multi-peak function subgroup
  • 相关文献

参考文献6

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [C]//Proceedings of Conference on Neural Networks, IEEE Press, 1995:1 942-1 948.
  • 2Fogel D B. An introduction to simulated evolutionary optimization[J]. IEEE Transaction Neural Network, 1994, 5(1):3-14.
  • 3Yisu J, Knowles J, Hongmei L, et al. The landscape adaptive particle swarm optimizer[J]. Applied Soft Computing, 2008, 8(1): 1-7.
  • 4Shi Y, Eberhart R C. Empirical study of particle swarm optimization[C]//Proceeding of The IEEE Congress on Evolutionary Computation, IEEE Press, 1999:1 945-1 950.
  • 5王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 6Ratnaweera A, Halgamuge S K, Watson H C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transaction on Evolutionary Computation, 2004, 8(3):240-255.

二级参考文献8

  • 1Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58-73.
  • 2Trelea I. The particle swarm optimization algorithm: Convergence analysis and parameter selection[ J ]. Information Processing Letters, 2003, 85(6):317-325.
  • 3Eberhart R, Shi Y. Comparing Inertia Weigthts and Constriction Factors in Particle Swarm Optimization[ C]. IEEE Congress on Evolutionary Computation, Piscataway: IEEE Service Center, 2000. 84-88.
  • 4Kennedy J, Eberhart R. Particle Swarm Optimization[ C]. IEEE Int. Conf. on Neural Networks, Piscataway: IEEE Service Center,1995. 1942-1948.
  • 5Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. Proc. on Int. Symposium on Micro Machine and Human Science, Piscataway: IEEE Service Center, 1995. 39--43.
  • 6Kennedy J. The Particle Swarm: Social Adaptation of Knowledge[ CI. IEEE Int. Conf. on Evolutionary Computation, Piscataway:IEEE Service Center, 1997. 303-308.
  • 7Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[Cl. IEEE Int. Conf. on Evolutionary Computation, Piscataway: NJ,IEEE Service Center, 1998. 69-73.
  • 8谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422

共引文献85

同被引文献33

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2夏桂梅,曾建潮.基于锦标赛选择遗传算法的随机微粒群算法[J].计算机工程与应用,2007,43(4):51-53. 被引量:17
  • 3刘全新,高建虎,董雪华.储层预测中的非线性反演方法(为《岩性油气藏》创刊而作)[J].岩性油气藏,2007,19(1):81-85. 被引量:16
  • 4Holland J H. Adaption in Natural and Artificial Systems[M]. Cambridge, MA : MIT Press, 1975.
  • 5Kennedy J, Eberhart R C. Particle Swarm Optimization[C]. Proe. IEEE Int. Conf. on Neural Networks, Perth, WA, Australia,1995:1 942-1 948.
  • 6Eberhart R C, Kennedy J A. A New Optimizer Using Particle Swarm Theory[C]. Proc. The Sixth Int. Symposium on Micro Machine and Human Science, Nagoya,Japan, 1995 : 39-43.
  • 7Ratnaweera A, Halgamuge S K, Watson H C. Self Organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients[J]. IEEE Transaction on Evolutionary Computation, 2004,8 ( 3 ) : 240-255.
  • 8Kennedy J,Eberhart R. Particle swarm optimization [C]//IEEE International Conference on Neural Networks. Proceedings of IEEE International Conference, 1995:1 942-1948.
  • 9Eberhart R,Kennedy J. A new optimizer using particle swarm theory [C].//Micro Machine and Human Science. Proceedings of the Sixth international Symposium, 1995 : 39-43.
  • 10易远元,袁三一,黄凯,师学明.地震波阻抗反演的粒子群算法实现[J].石油天然气学报,2007,29(3):79-81. 被引量:17

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部